1 Introduction

We have N data points $X_i \in \mathbb{R}^D$. The points belong to G groups. Consider the problem of finding a linear transformation a to one-dimensional space such that the points $X_i a = Z_i \in \mathbb{R}$ are easy to classify. For simplicity we will assume that the N data points X_i have zero mean.

Some notation: given a matrix A indicate with A_i and A_j the i-th row and the j-th column of A, and with A_{ij} the i,j-th element of A. Moreover:

\begin{align*}
[i] & = g \quad g \text{ is the group of point } i \\
X & = \begin{bmatrix} X_1 \\ \vdots \\ X_N \end{bmatrix} \in \mathbb{R}^{N \times D} \quad \text{the data} \\
n & = [n_1, \ldots, n_G] \quad \text{number of data points in each group} \\
N & = \text{diag}(n) = G^T G = \begin{bmatrix} n_1, 0, 0, \ldots, 0 \\ 0, n_2, 0, \ldots, 0 \\ \vdots \\ 0, 0, \ldots, 0, n_g \end{bmatrix} \\
G_i & = \delta([i], j) \quad i.e. \quad G = \begin{bmatrix} 1, 0, \ldots, 0 \\ \vdots \\ 0, \ldots, 0, 1 \end{bmatrix} \in \mathbb{R}^{N \times G} \\
M_g & = \frac{1}{n_g} \sum_{[i]=g} X_i \quad \text{Mean of } j\text{-th coordinate in group } g \\
M & = N^{-1} G^T X = \begin{bmatrix} M_1 \\ \vdots \\ M_G \end{bmatrix} \in \mathbb{R}^{G \times D} \quad \text{Matrix collecting the means of each group} \\
A & = U_A L_A V_A^T \quad \text{the singular value decomposition of } A \\
D & = I - GN^{-1} G^T \\
X_0 & = X - GM = DX \quad \text{the data, each referred to group’s mean}
\end{align*}
2 Optimization problem

In order for the points Z_i to be easy to classify one would like to simultaneously maximize the between-clusters distance and minimize the within cluster distance. These quantities may be defined as:

Between-clusters distance – Consider the means M_g of each group g. One would like to maximize their spread around the overall mean (the origin, since X is zero-mean):

$$B = (GM)^T (GM) = X^T G N^{-1} G^T X$$

(11)

Notice that each mean M_g is counted n_g times in order to reflect the frequency of group g.

Within-clusters distance – Consider the spread of the points around each group’s center. One would like to minimize:

$$W = X_0^T X_0 = X^T D^T D X$$

(12)

In order to optimize both quantities simultaneously Fisher proposed to maximize their ratio with respect to the transformation a:

$$J(a) = \frac{a^T B a}{a^T W a}$$

(13)

Taking the derivative with respect to a and equating to zero:

$$DJ(a) = 2 B a a^T W a - 2 W a a^T B a \overline{(a^T W a)^2} = 0$$

(14)

$$\lambda = \frac{a^T B a}{a^T W a}$$

(15)

$$\Rightarrow B a = \lambda W a \quad a^T W a \neq 0$$

(16)

Therefore in order to find the value of a we need to solve the generalized eigenvector problem $B a = \lambda W a$ subject to $a^T W a \neq 0$.

2.1 Eigenvector problem

Call W^\dagger the generalized inverse of W, i.e. the inverse restricted to the subspace where W is nonsingular. Then:

$$B a = \lambda W a \quad a^T W a \neq 0$$

(18)

$$W^\dagger = V_{X_0} L_{X_0}^T V_{X_0}^T$$

(19)

$$\Rightarrow W^\dagger B a = \lambda a$$

(20)

define (U_{WB}, L_{WB}, V_{WB}) \text{ SVD}$(W^\dagger B)$

(21)

$$\Rightarrow a = V_{WB}^T$$

(22)
2.2 Alternative approach

An equivalent approach consists in calculating a coordinate transformation \(a = Sb \) such that \(a^T W a = \|b\|^2 \). In this case one may calculate the \(b \) that maximizes the numerator, subject to \(\|b\| = 1 \). One must, however, pay attention to the fact that the solution \(b \) must not be in the null space of \(S \).

From the definition of \(W \) and \(B \) etc.:

\[
W = X_0^T X_0 = V_{X_0} L_{X_0}^2 V_{X_0}^T
\]
\[
S = V_{X_0} L_{X_0}^{-1}
\]
\[
a = Sb
\]
\[
b = S^{-1} a = L_{X_0} V_{X_0}^T a
\]
\[
a^T W a = a^T V_{X_0} L_{X_0}^2 V_{X_0}^T a = b^T b
\]
\[
a^T B a = b^T S^T B S b
\]
\[(U, L, V) = \text{SVD}(S^T B S)\]
\[
\Rightarrow b = V^1
\]
\[
\Rightarrow a = S V^1 = V_{X_0} L_{X_0}^{-1} V^1
\]

3 Code and References

Check out the Matlab function `fisherLD.m` written by Markus Weber. A prize to whoever figures out how the code works.