Distributed Kd-Trees for Retrieval from Very Large Image Collections

Goal
Scaling image retrieval to 10^9 images:
- Efficient Parallel Implementation
- Measuring Retrieval Precision
- Measuring Retrieval Speed

Background
Full Representation (FR) has much better precision than Bag of Words (BoW)

Independent Kd-Trees (IKdt)
- Dataset partitioned into M subsets
- Nearest Neighbor search runs in parallel
- Root machine selects nearest of M results

Distributed Kd-Trees (DKdt)
- One global Kd-Tree is built from all data
- Top subtree stored in root machine, bottom in leaf machines
- Root machine directs queries to subset of leaf machines

Results
- DKdt is clearly superior to IKdt with precision that is 32% higher at 100M images.
- DKdt is superior to IKdt in terms of both precision and throughput. It is about 30 times faster at 100M images.

Conclusions
- Implemented and tested parallel retrieval architecture
- Experiments on 10^8 images and 2000 CPUs
- Scales well with dataset size:
 - Speed unchanged
 - Gentle performance loss

Reference