Introduction to Boosting and Joint Boosting

Hsuan-Tien Lin

Learning Systems Group, Caltech

2005/04/26, Presentation in EE150
Outline

1. Introduction to Boosting
 - Intuition of Boosting
 - Adaptive Boosting (AdaBoost)

2. Joint Boosting
 - Independent Boosting
 - Joint Boosting
Apple Recognition Problem

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.
Apple Recognition Problem

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.
Apple Recognition Problem

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.
Apple Recognition Problem

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.
Apple Recognition Problem

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.
Apple Recognition Problem

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.
Apple Recognition Problem

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.
Apple Recognition Problem

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.
Apple Recognition Problem

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.
Apple Recognition Problem

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.
Apple Recognition Problem

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.
Apple Recognition Problem

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.
Apple Recognition Problem

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.
Apple Recognition Problem

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.
Is this a picture of an apple?
We want to teach a class of 6 year olds.
Gather photos from NY Apple Asso. and Google Image.
Apple Recognition Problem

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.
Apple Recognition Problem

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.
Apple Recognition Problem

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.
Apple Recognition Problem

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.
Apple Recognition Problem

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.
Apple Recognition Problem

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.
Our Fruit Class Begins

Teacher: How would you describe an apple? Michael?

Michael: I think apples are circular.

(Class): Apples are circular.
Our Fruit Class Begins

Teacher: How would you describe an apple? Michael?

Michael: I think apples are circular.

Class: Apples are circular.
Teacher: How would you describe an apple? Michael?
Michael: I think apples are circular.
(Class): Apples are circular.
Teacher: Being circular is a good feature for the apples. However, if you only say circular, you could make several mistakes. What else can we say for an apple? Tina?

Tina: It looks like apples are red.

(Class): Apples are somewhat circular and somewhat red.
Teacher: Being circular is a good feature for the apples. However, if you only say circular, you could make several mistakes. What else can we say for an apple? Tina?

Tina: It looks like apples are red.

(Class): Apples are somewhat circular and somewhat red.
Teacher: Being circular is a good feature for the apples. However, if you only say circular, you could make several mistakes. What else can we say for an apple? Tina?

Tina: It looks like apples are red.

(Class): Apples are somewhat circular and somewhat red.
Teacher: Yes. Many apples are red. However, you could still make mistakes based on circular and red. Do you have any other suggestions, Joey?

Joey: Apples could also be green.

(Class): Apples are somewhat circular and somewhat red and possibly green.
Teacher: Yes. Many apples are red. However, you could still make mistakes based on circular and red. Do you have any other suggestions, Joey?

Joey: Apples could also be green.

(Class): Apples are somewhat circular and somewhat red and possibly green.
Teacher: Yes. Many apples are red. However, you could still make mistakes based on circular and red. Do you have any other suggestions, Joey?

Joey: Apples could also be green.

(Class): Apples are somewhat circular and somewhat red and possibly green.
Teacher: Yes. It seems that apples might be circular, red, green. But you may confuse them with tomatoes or peaches, right? Any more suggestions, Jessica?

Jessica: Apples have stems at the top.

(Class): Apples are somewhat circular, somewhat red, possibly green, and may have stems at the top.
Our Fruit Class Continues

Teacher: Yes. It seems that apples might be circular, red, green. But you may confuse them with tomatoes or peaches, right? Any more suggestions, Jessica?

Jessica: Apples have stems at the top.

(Class): Apples are somewhat circular, somewhat red, possibly green, and may have stems at the top.
Our Fruit Class Continues

Teacher: Yes. It seems that apples might be circular, red, green. But you may confuse them with tomatoes or peaches, right? Any more suggestions, Jessica?

Jessica: Apples have stems at the top.

Class: Apples are somewhat circular, somewhat red, possibly green, and may have stems at the top.
Put Intuition to Practice

Intuition

- Combine simple rules to approximate complex function.
- Emphasize incorrect data to focus on valuable information.

AdaBoost Algorithm (Freund and Schapire 1997)

- Input: training data $Z = (x_i, y_i)_{i=1}^N$.
- For $t = 1, 2, \cdots, T,$
 - Learn a simple rule h_t from emphasized training data.
 - Get the confidence w_t of such rule.
 - Emphasize the training data that do not agree with h_t.
- Output: combined function $H(x) = \sum_{t=1}^T w_t h_t(x)$ with normalized w.
Put Intuition to Practice

Intuition

- Combine simple rules to approximate complex function.
- Emphasize incorrect data to focus on valuable information.

AdaBoost Algorithm (Freund and Schapire 1997)

- Input: training data $Z = (x_i, y_i)_{i=1}^N$.
- For $t = 1, 2, \cdots, T$,
 - Learn a simple rule h_t from emphasized training data.
 - Get the confidence w_t of such rule.
 - Emphasize the training data that do not agree with h_t.
- Output: combined function $H(x) = \sum_{t=1}^T w_t h_t(x)$ with normalized w.
Put Intuition to Practice

Intuition

- Combine simple rules to approximate complex function.
- Emphasize incorrect data to focus on valuable information.

AdaBoost Algorithm (Freund and Schapire 1997)

- Input: training data $Z = (x_i, y_i)_{i=1}^N$.
- For $t = 1, 2, \cdots, T$,
 - Learn a simple rule h_t from emphasized training data.
 - Get the confidence w_t of such rule
 - Emphasize the training data that do not agree with h_t.
- Output: combined function $H(x) = \sum_{t=1}^T w_t h_t(x)$ with normalized w.
Put Intuition to Practice

Intuition

- Combine simple rules to approximate complex function.
- Emphasize incorrect data to focus on valuable information.

AdaBoost Algorithm (Freund and Schapire 1997)

- Input: training data $Z = (x_i, y_i)_{i=1}^{N}$.
- For $t = 1, 2, \cdots, T$,
 - Learn a simple rule h_t from emphasized training data.
 - Get the confidence w_t of such rule.
 - Emphasize the training data that do not agree with h_t.
- Output: combined function $H(x) = \sum_{t=1}^{T} w_t h_t(x)$ with normalized w.

Hsuan-Tien Lin

Boosting and Joint Boosting
Put Intuition to Practice

Intuition

- Combine simple rules to approximate complex function.
- Emphasize incorrect data to focus on valuable information.

AdaBoost Algorithm (Freund and Schapire 1997)

- Input: training data $Z = (x_i, y_i)_{i=1}^{N}$.
- For $t = 1, 2, \cdots, T$,
 - Learn a simple rule h_t from emphasized training data.
 - Get the confidence w_t of such rule.
 - Emphasize the training data that do not agree with h_t.

- Output: combined function $H(x) = \sum_{t=1}^{T} w_t h_t(x)$ with normalized w.
Put Intuition to Practice

Intuition

- Combine simple rules to approximate complex function.
- Emphasize incorrect data to focus on valuable information.

AdaBoost Algorithm (Freund and Schapire 1997)

- Input: training data $Z = (x_i, y_i)_{i=1}^N$.
- For $t = 1, 2, \cdots, T$,
 - Learn a simple rule h_t from emphasized training data.
 - Get the confidence w_t of such rule.
 - Emphasize the training data that do not agree with h_t.
- Output: combined function $H(x) = \sum_{t=1}^{T} w_t h_t(x)$ with normalized w.
AdaBoost Algorithm

- Input: training data \(Z = (x_i, y_i)_{i=1}^N \).
- For \(t = 1, 2, \cdots, T \),
 - Learn a simple rule \(h_t \) from emphasized training data.
 - How? Choose a \(h_t \in \mathcal{H} \) with minimum emphasized error.
 - For example, \(\mathcal{H} \) could be a set of decision stumps
 \(h_{\theta,d,s}(x) = s \cdot I[(x)_d > \theta] \).
 - Get the confidence \(w_t \) of such rule
 - How? An \(h_t \) with lower error should get higher \(w_t \).
 - Emphasize the training data that do not agree with \(h_t \).
 - Output: combined function \(H(x) = \sum_{t=1}^T w_t h_t(x) \) with normalized \(w \).
- Let’s see some demos.
AdaBoost Algorithm

- Input: training data $Z = (x_i, y_i)_{i=1}^N$.
- For $t = 1, 2, \ldots, T$,
 - Learn a simple rule h_t from emphasized training data.
 - How? Choose a $h_t \in \mathcal{H}$ with minimum emphasized error.
 - For example, \mathcal{H} could be a set of decision stumps
 $h_{\theta,d,s}(x) = s \cdot I[(x)_d > \theta]$.
 - Get the confidence w_t of such rule
 - How? An h_t with lower error should get higher w_t.
 - Emphasize the training data that do not agree with h_t.
 - Output: combined function $H(x) = \sum_{t=1}^T w_t h_t(x)$ with normalized w.
- Let’s see some demos.
AdaBoost Algorithm

- **Input:** training data $Z = (x_i, y_i)_{i=1}^{N}$.
- **For** $t = 1, 2, \ldots, T$,
 - Learn a simple rule h_t from emphasized training data.
 - **How?** Choose a $h_t \in H$ with minimum emphasized error.
 - For example, H could be a set of decision stumps $h_{\theta,d,s}(x) = s \cdot I[(x)_d > \theta]$.
 - Get the confidence w_t of such rule
 - **How?** An h_t with lower error should get higher w_t.
 - Emphasize the training data that do not agree with h_t.
 - **Output:** combined function $H(x) = \sum_{t=1}^{T} w_t h_t(x)$ with normalized w.

Let’s see some demos.

Hsuan-Tien Lin

Boosting and Joint Boosting
Some More Details

AdaBoost Algorithm

- **Input**: training data $Z = (x_i, y_i)_{i=1}^{N}$.
- **For $t = 1, 2, \ldots, T$**,
 - Learn a simple rule h_t from emphasized training data.
 - **How?** Choose a $h_t \in \mathcal{H}$ with minimum emphasized error.
 - For example, \mathcal{H} could be a set of decision stumps $h_{\theta,d,s}(x) = s \cdot I(x_d > \theta)$.
 - Get the confidence w_t of such rule
 - **How?** An h_t with lower error should get higher w_t.
 - Emphasize the training data that do not agree with h_t.
- **Output**: combined function $H(x) = \sum_{t=1}^{T} w_t h_t(x)$ with normalized w.
- Let’s see some demos.
AdaBoost Algorithm

- **Input:** training data $Z = (x_i, y_i)_{i=1}^N$.
- **For** $t = 1, 2, \cdots, T$,
 - Learn a simple rule h_t from emphasized training data.
 - **How?** Choose a $h_t \in \mathcal{H}$ with minimum emphasized error.
 - **For example,** \mathcal{H} could be a set of decision stumps
 $h_{\theta,d,s}(x) = s \cdot I[(x)_d > \theta]$.
 - Get the confidence w_t of such rule
 - **How?** An h_t with lower error should get higher w_t.
 - Emphasize the training data that do not agree with h_t.
- **Output:** combined function $H(x) = \sum_{t=1}^T w_t h_t(x)$ with normalized w.

Let’s see some demos.
Why Boosting Works?

- Our intuition is correct.
- Provably, if each h_t is better than a random guess (has error $< 1/2$), the combined function $H(x)$ could make no error at all!
- Besides, boosting obtains large $y_i H(x_i)$ value on each data: $H(x)$ could separate the data as clearly as possible.
Why Boosting Works?

- Our intuition is correct.
- Provably, if each h_t is better than a random guess (has error $< 1/2$), the combined function $H(x)$ could make no error at all!
- Besides, boosting obtains large $y_i H(x_i)$ value on each data: $H(x)$ could separate the data as clearly as possible.
Our intuition is correct.

Provably, if each \(h_t \) is better than a random guess (has error \(< 1/2\)), the combined function \(H(x) \) could make no error at all!

Besides, boosting obtains large \(y_i H(x_i) \) value on each data: \(H(x) \) could separate the data as clearly as possible.
Multi-Class Boosting (Independent Boosting)

Not very different from binary boosting.

- Input: training data $Z = (x_i, y_i)^N_{i=1}$.
- For $t = 1, 2, \cdots, T$,
 - For $c = 1, 2, \cdots, C$
 - Learn a rule alone with confidence $h_t(x, c)$ from emphasized training data.
 - Emphasize the training data that do not agree with $h_{c,t}$.
- Output: combined function $H(x, c) = \sum_{t=1}^{T} h_t(x, c)$.

Separate each class with the rest independently.
Multi-Class Boosting (Independent Boosting)

Not very different from binary boosting.

- Input: training data $Z = (x_i, y_i)_{i=1}^N$.
 - For $t = 1, 2, \cdots, T$,
 - For $c = 1, 2, \cdots, C$
 - Learn a rule alone with confidence $h_t(x, c)$ from emphasized training data.
 - Emphasize the training data that do not agree with $h_{c,t}$.

- Output: combined function $H(x, c) = \sum_{t=1}^T h_t(x, c)$.

Separate each class with the rest independently.
Problem of Independent Boosting

- Number of rules for good performance: $O(C)$. For a budget of M rules, can only use M/C rules per class.

- For example, for fruits, many of the M rules (for apple, orange, tomato, etc.) would be “it is circular.”: waste of budget.

- The rules separate each class clearly: not contain mutual information between classes.

- For example, if we separate apples with other fruits, we have no idea that apples and tomatoes look similar.

- Independent Boosting: each class resides in its own, budget-wasting rules.
Problem of Independent Boosting

- Number of rules for good performance: $O(C)$. For a budget of M rules, can only use M/C rules per class.
- For example, for fruits, many of the M rules (for apple, orange, tomato, etc.) would be “it is circular.”: waste of budget.
- The rules separate each class clearly: not contain mutual information between classes.
- For example, if we separate apples with other fruits, we have no idea that apples and tomatoes look similar.
- Independent Boosting: each class resides in its own, budget-wasting rules.
Problem of Independent Boosting

- Number of rules for good performance: $O(C)$. For a budget of M rules, can only use M/C rules per class.

- For example, for fruits, many of the M rules (for apple, orange, tomato, etc.) would be “it is circular.”: waste of budget.

- The rules separate each class clearly: not contain mutual information between classes.

- For example, if we separate apples with other fruits, we have no idea that apples and tomatoes look similar.

- Independent Boosting: each class resides in its own, budget-wasting rules.
Problem of Independent Boosting

- Number of rules for good performance: $O(C)$. For a budget of M rules, can only use M/C rules per class.
- For example, for fruits, many of the M rules (for apple, orange, tomato, etc.) would be “it is circular.”: waste of budget.
- The rules separate each class clearly: not contain mutual information between classes.
- For example, if we separate apples with other fruits, we have no idea that apples and tomatoes look similar.
- Independent Boosting: each class resides in its own, budget-wasting rules.
Problem of Independent Boosting

- Number of rules for good performance: $O(C)$. For a budget of M rules, can only use M/C rules per class.
- For example, for fruits, many of the M rules (for apple, orange, tomato, etc.) would be “it is circular.”: waste of budget.
- The rules separate each class clearly: not contain mutual information between classes.
- For example, if we separate apples with other fruits, we have no idea that apples and tomatoes look similar.
- Independent Boosting: each class resides in its own, budget-wasting rules.
Joint Boosting

Try to have joint rules.

- **Input:** training data \(Z = (x_i, y_i)^N_{i=1} \).
- **For** \(t = 1, 2, \ldots, T \),
 - **For** \(S \subseteq \{1, 2, \ldots, C\} \)
 - Learn a rule alone with confidence \(h_t(x, S) \) using the classes in \(S \) combined together.
 - Pick the rule \(h_t(x, S_t) \) that achieves the best overall criteria.
 - Emphasize the training data that do not agree with \(h_t(x, S_t) \).
- **Output:** combined function \(H(x, c) = \sum_{c \in S_t} h_t(x, S_t) \).

Separate a cluster of class **jointly** with the rest.
Joint Boosting

Try to have joint rules.

- **Input:** training data $Z = (x_i, y_i)_{i=1}^N$.
- **For** $t = 1, 2, \ldots, T$,
 - **For** $S \subseteq \{1, 2, \ldots, C\}$
 - Learn a rule alone with confidence $h_t(x, S)$ using the classes in S combined together.
 - Pick the rule $h_t(x, S_t)$ that achieves the best overall criteria.
 - Emphasize the training data that do not agree with $h_t(x, S_t)$.
- **Output:** combined function $H(x, c) = \sum_{c \in S_t} h_t(x, S_t)$.

Separate a cluster of class **jointly** with the rest.
Pros of Joint Boosting

- A rule from a cluster of classes: meaningful and often stable.

- Number of rules for good performance: $O(\log C)$. Use the budget efficiently.
Cons of Joint Boosting

- The algorithm is **very slow**: $S \subseteq \{1, 2, \cdots, C\}$ is a loop of size 2^C.
- Replace the loop by a greedy search.
 - Add the best single class to the cluster.
 - Greedily combine a class to the cluster. \cdots
- Trace $O(C^2)$ subsets instead of $O(2^C)$.
- Still slow in general, but could speed up when \mathcal{H} is simple.
 For example, the regression stumps

\[aI[(x)_d > \theta] + b. \]
Goal: detect 21 objects (13 indoor, 6 outdoor, 2 both) in the picture.
Experiment Framework (Cont’d)

- Extract feature with the following steps
 - Scale the image by σ.
 - Filter (by normalized correlation) with a patch g_f.
 - Mark the region to average response by a mask w_f.
 - Take the p-norm of average response in the region.
- Patches: small parts of the known objects – randomly generated 2000.
- Example: a feature for the stem of an apple would be a patch (matched filter to stem) with mask at the top portion.
Experiment Results

- Similarity between combined classes (head and trash can).
Experiment Results (Cont’d)

- Save budgets for rules.

![Graph showing experiment results](image-url)
Save needed data.

<table>
<thead>
<tr>
<th>Item</th>
<th>Features</th>
<th>Training Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen</td>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>Chair</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Person</td>
<td>15</td>
<td>2 tr. samples</td>
</tr>
<tr>
<td>Stop</td>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>Bottle</td>
<td>15</td>
<td>2 tr. samples</td>
</tr>
<tr>
<td>Keyboard</td>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>Mug</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Light</td>
<td>15</td>
<td>2 tr. samples</td>
</tr>
<tr>
<td>Car frontal</td>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>Bottle</td>
<td>15</td>
<td>2 tr. samples</td>
</tr>
</tbody>
</table>
Simple rules are shared by more classes.
Application: Multiview detection

- Multiview detection: usually consider each view as a class.

- Independent boosting: cannot allow too many classes (views).

- Views often share similar rules: joint boosting benefits.
Result: Multiview detection

- Less false alarms in detection.

a) No sharing between views.

b) Sharing between views.
Result: Multiview detection (Cont’d)

- Significantly better ROC.

Graph showing ROC curves for independent and joint boosting.
Summary

- **Boosting**: reweight examples and combine rules.
- **Independent boosting**: separate each class with the rest independently.
- **Joint boosting**: find best joint cluster to separate with the rest.
 - More complex algorithm.
 - More meaningful and robust classifiers.
- **Utility of joint boosting**:
 - When some of the classes share common rules: e.g. fruits.
 - In multiview object detection: e.g. views of cars.