
DimensionalityReductionUsing Automatic
Supervisionfor Vision-BasedTerrainLearning

Anelia Angelova
ComputerScienceDept.

California Instituteof Technology
Email: anelia@vision.caltech.edu

Larry Matthies,Daniel Helmick
JetPropulsionLaboratory

California Instituteof Technology
lhm, dhelmick@jpl.nasa.gov

PietroPerona
ElectricalEngineeringDept.

California Instituteof Technology
perona@vision.caltech.edu

Abstract— This paper considersthe problem of learning to rec-
ognizediffer ent terrains fr om color imagery in a fully automatic
fashion, using the robot's mechanicalsensorsas supervision. We
presenta probabilistic framework in which the visual information
and the mechanical supervision interact to learn the available
terrain types.Within this framework, a novel supervised dimen-
sionality reduction method is proposed,in which the automatic
supervision provided by the robot helps select better lower
dimensional representations,more suitable for the discrimination
task at hand. Incorporating supervision into the dimensionality
reductionprocessis important, assometerrains might be visually
similar but induce very differ ent robot mobility. Therefore,
choosing a lower dimensional visual representation adequately
is expected to impr ove the vision-based terrain learning and
the �nal classi�cation performance. This is the �rst work that
proposesautomaticallysuperviseddimensionality reduction in a
probabilistic framework using the supervision coming fr om the
robot's sensors.The proposedmethod standsin betweenmethods
for reasoningunder uncertainty using probabilistic models and
methods for learning the underlying structur e of the data.

The proposed approach has been tested on �eld test data
collected by an autonomous robot while dri ving on soil, gravel
and asphalt. Although the supervision might be ambiguous
or noisy, our experiments show that it helps build a more
appropriate lower dimensionalvisual representationand achieves
impr oved terrain recognitionperformancecompared to unsuper-
vised learning methods.

I . INTRODUCTION

We considerthe problem of learning to recognizeterrain
types from color imagery for the purposesof autonomous
navigation.This is necessarybecausedifferentterrainsinduce
differentmobility limitations on the vehicle.For example,the
robot might get stuck in sandor mud, so it has to learn to
avoid suchterrains.Visual information is usedas a forward-
looking sensor to determine the terrain type prior to the
robot entering the terrain, so that a better planning can be
done. In this paper the robot learnsautomaticallyusing its
own mechanicalmeasurementswhile traversing the terrains.
In particular, the amountof robot slip is usedas supervision
for learningdifferentterraintypesandthe robot's mobility on
them.

Learning fully automaticallyis important, becausein the
context of autonomousnavigation hugeamountsof dataare
availableandproviding manualsupervisionis impractical.To
avoid manuallabeling, the so-calledself-supervisedlearning
methodshave proposedto use the vehicle's sensorsas su-

pervision for learning [4], [11], [13], [16], [19]. The key
ideaof self-supervisedlearningis that oneof the sensorscan
provide the groundtruth for learningwith anothersensorand
the underlying assumptionis that the former sensorcan be
reliably clusteredor thresholded[4], [11], [13], [16].

However, somesignalsobtainedfrom the robotdo not nec-
essarilyprovideauniqueclusteringinto well separableclasses,
but canbestill usefulfor providing supervision.For example,
differentterraintypesmight inducesimilar robotmobility, i.e.
the supervisionmight be ambiguous. In the particular case
of slip, which is slope dependent,the robot can have the
sameslip on �at ground but different slip when traversing
slopes.Our previous work [3] proposeda uni�ed learning
framework for this case,but its limitation is that the visual
representationis low dimensionalandthemethodcanbecome
numericallybrittle or requireprohibitive amountsof training
datafor higherdimensionalinputs.Roboticsapplicationsoften
need to processdata obtainedfrom multiple sensorswhich
is high dimensional.In particular, featurerepresentationsof
visual dataare typically of high dimensionality, especiallyif
�ne distinctionsbetweenterrainsneedto be doneor a lot of
intra-classvariability hasto be accommodated.

To cope with high dimensionalinput spaces,we propose
to use the supervision,automaticallyobtainedby the robot,
to affect the dimensionalityreductionprocess.The intuition
is that two visually similar terrainswhich are not normally
discriminatedin thevisual space,andaremappedto thesame
clusterin thelower dimensionalspace,might bediscriminated
properly after introducing the supervision.In our case the
mechanicalsupervisionis in the form of robot slip andmight
be ambiguousor noisy. To solve the problem in this setup,
we presenta probabilisticframework in which themechanical
supervisionprovidedby therobotis usedto learntherepresen-
tationandclassi�cationof terraintypesin thevisualspaceau-
tomatically. Thisessentiallymeanshaving thesupervisionhelp
choosemore appropriateand meaningful,with respectto the
learningtask,low dimensionalprojectionsof the initial visual
data.Most previous dimensionalityreductiontechniquesare
completelyunsupervised[17], [21], whereasherewe propose
to learna moreusefullower dimensionalvisual representation
which at the sametime allows for better discrimination of
terrainsdeterminedto bedifferentby theautomaticmechanical
supervisionfrom therobot.Thesigni�canceof theapproachis



thata fully automaticlearningandrecognitionof terraintypes
can be performedwithout using humansupervisionfor data
labeling.Moreover, the methodallows the supervisionsignal
obtainedby the robot to be noisy or ambiguous,i.e. it might
not have a one-to-onecorrespondenceto the visual data.

I I . PREVIOUS WORK

Learning to recognizeterrains from vision and to deter-
mine their characteristicsregarding traversability or robot
mobility has been widely applied for autonomousvehi-
cles [11], [16], [24]. However, current methods are not
automatedenough and human supervision or some other
heuristicsarestill neededto determinetraversability[9], [16].
Recently, the conceptof learningfrom the vehicle's sensors,
referred to as learning from proprioception [16], or self-
supervisedlearning[4], [13], [19], hasemerged.This ideahas
proved to be particularly useful for extendingthe perception
range[4], [9], [16], [19] which is crucial to increasingthe
speedandef�ciency of the robot [4]. Self-supervisedlearning
approachesrequire good separabilityin the spaceof sensor
responses,so that a uniqueterrain classassignmentfor each
example is obtained.The latter is not always possible,e.g.
driving at slower speed cannot produce de�niti ve enough
vibration patternsto discriminateterrains[6].

Dimensionalityreductiontechniqueshave alsobecomevery
popularin roboticsapplications,becausethe input visual data
is of highdimensionalityandmoreef�cient representationsare
needed[8], [12], [22]. Most previousdimensionalityreduction
methodsare unsupervised[7], [17], [21], as they have been
intended for data representation.However, in our robotics
application,whereadditionalmechanicalsensormeasurements
areavailable,it is morerationalto usethemassupervisionin
selectingbetter lower dimensionaldatarepresentation.Some
recentwork hasproposedto includeprior informationinto the
dimensionalityreduction framework, for example, by using
known class labels [20] or by assumingthe projectionsof
someexamplesare given [25]. In our case,the supervision,
i.e. theknowledgeaboutclass-membership,is fairly weakand
neitherof theseapproachescanbe applied.

This work extends the probabilistic formulation for di-
mensionality reduction using Mixture of Factor Analyzers
(MoFA) [7], [12], [17] with the major distinction that addi-
tional measurements,obtainedindependentlyby therobot,are
usedas supervisionin the dimensionalityreductionprocess.
Moreover, in [17], [12] thelowerdimensionalityrepresentation
is observed (obtainedby applying the unsuperviseddimen-
sionality reductionalgorithm Isomap[21] prior to learning),
whereashere it is unknown and needsto be learned.The
particularapplicationaddressesrecognizingterrain typesand
inherent mobility related to robot slip using visual input,
similar to [2], with thedifferencethatlearningis donewith au-
tomaticsupervision,providedby the robot,anddoesnot need
manuallabelingof terrain types,as in [2]. Being able to pre-
dict certainmechanicalterrainpropertiesremotelyfrom only
visual informationand other sensorsonboardthe vehicle has

signi�cant importancein autonomousnavigation applications,
becausemore intelligent planningcould be done[16], [24].

I I I . PROBLEM FORMULATION

Considertheproblemof predictingthemobility characteris-
tics Z of therobot in eachmapcell of the forthcomingterrain
using as input the visual information x 2  in the cell and
someinformationaboutthe terraingeometryy 2 ©, e.g.local
terrain slope( is the visual space,© is the spaceof terrain
slopes).The input variablesx and y can be obtainedby the
robot from a distance,which will allow the predictionof the
outputvariablefrom a distancetoo. Let usdenotethefunction
that needsto be evaluatedasZ = F (x; y ).

This problemcanbereducedto recognizingtheterraintype
from visual information.That is, we canassumethat thereare
a limited number(K ) of terraintypesthatcanbeencountered
and that on eachterrain type the robot experiencesdifferent
behavior (e.g.mobility):

F (x; y ) = f j (y ); if x 2  j (1)

where j 2  aredifferent subsetsin the visual space, i \
 j = ; ; i 6= j andf j (y ) are(nonlinear)functionswhich work
in the domain© andwhich changetheir behavior depending
on the terrain. In other words, different mobility behaviors
occuron differentterraintypeswhich aredeterminedby visual
information. Now the questionis how to learn the mapping
Z = F (x; y ) from training data D = f (x i ; y i ); zi gN

i =1 ,
where x i are the visual representationsof patchesfrom the
observed terrain,y i are the terrainslopes,andzi are the slip
measurementswhenthe robot traversesthat terrain.

The input spaceX , representingthe visual data, can be
of a very high dimension,which impedesworking with it.
Instead,we work with a lower dimensionalembeddingU of
the input spaceX . For that purposewe need to learn the
embeddingR : X ! U itself. As the learningof this mapping
requiresprohibitive amountof datawhenever the input is high
dimensional,we assume,similar to [7], [12], that it takes a
particularform. Namely:

x = ¤ j u j + v j for x 2  j (2)

where ¤ j is the projection matrix and u j , v j are normally
distributed: u j » N (¹ j ; § j ), v j » N (´ j ; ª j ). That is,
we assumethat a locally linear mapping is a good enough
approximationfor patchesthatbelongto thesameterrainclass.

Figure1 visualizestheproblemwhenmeasurementsof slip
as a function of terrain slopeare usedas supervision.Robot
slip is a measureof the lack of progressand is essentially
the complementof robot mobility [2]. The measurementsin
Figure 1 are obtainedfrom actual robot traversalsand are
computedas the differencebetweenVisual Odometry(VO)
basedpose estimates[15] and the pose estimatesfrom the
kinematic model of the robot. The mechanicalslip mea-
surementsare received completelyautomatically, as only the
vehicle's sensorsare neededto computeslip. A nonlinear
model can approximatethe slip behavior as a function of
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Fig. 1. Left: Slip measurementsto beusedasautomaticsupervisionin our learningsetup.Eachtrainingexampleconsistsof an imagepatchrepresentedasa
high dimensionalpoint anda correspondingslip measurementrepresentedasa function of the estimatedslopeangle.Middle: Lower dimensionalprojections
of the visual data,obtainedby the unsuperviseddimensionalityreductionalgorithm Isomap[21]. The rectangleis expandedto the right and visualizesthe
original imagepatches.The groundtruth terrain typesin this �gure are provided by humanlabeling,but our systemworks without humansupervisionand
relies on the goodness-of-�tof nonlinearslip modelsto the slip measurementsas automaticsupervisionto learn the terrain representation(dimensionality
reduction),terrainclassi�cation,and the nonlinearslip modelsfrom the available training data.

slope for eachterrain type. Thesemodelsessentiallyact as
supervision,but they are unknown and have to be learned
from thedata.Theslopescanbeeasilyestimatedby therobot
remotelyusing rangedata from stereo,ladar, etc., and a tilt
sensoron the robot,which is readily availablefrom the IMU,
for example.We consideronly the slip in the forward motion
direction as dependenton the longitudinal slope, similar to
slip measurementsdonefor the Mars ExplorationRover [14],
which is a simplerandmorestraightforward representationof
slip than in [2]. This representationis also more convenient
for usingtheslip measurementsassupervisionduringlearning.
After the robot has learnedhow to visually discriminatethe
terrains,it is conceivable to learn more complex slip models
using additional input variables(e.g. both longitudinal and
lateralslopes,roughness,etc.),as in [2].

Figure 1 also shows the vision part of the input data,
representedas describedin SectionV-B, projectedinto 2D
by usingthe unsuperviseddimensionalityreductionalgorithm
Isomap[21]. As seen,there is a signi�cant overlap between
terrain classeswhich have visually similar patches.Because
of the overlap,performingunsupervised,purely vision-based
classi�cation is not suf�cient. So, to be able to learn to
correctly discriminatetheseterrainsand predict a potentially
differentmobility behavior on them,someform of supervision
is needed.The key idea is that the dimensionalityreduction
processcanalsotake advantageof thesupervisioninformation
obtainedfrom additionalmechanicalsensors.

The main problemin our formulationis that the slip signal
to be used as supervisioncan be of very weak form and
usingslip measurementsassupervisioncannotbe reducedto
supervisedlearning,as in [4], [11]. In particular, becauseof
the nonlinearity of the slip modelsf i (y ), it is possiblethat
some of the models overlap in parts of their domain (i.e.
for somei; j ; i 6= j , f i (y ) ´ f j (y ), for y 2 ©0, for some
©0 µ ©). For example,several terrainsmight exhibit thesame
slip for » 0± slope,asseenin Figure1, or simply two visually
differentterraintypesmighthave thesameslip behavior. Since

someof the supervision(for someof the training examples)
is inherently ambiguous,the slip supervisionsignalscannot
be directly clusteredinto well separableclasses.However, if
two terrainsexhibit differentslip behavior for any sloperange,
the supervisionshouldstill be able to force a betterdiscrim-
ination in the visual space,even thoughnot all examplescan
de�niti vely exercisesupervision.Theintuition is thatexamples
for which the supervisionsignal is strong will propagate it
to the examplesof ambiguoussupervisionin the sameclass
through their visual similarity. Finally, as the supervisionis
collectedautomaticallyby the robot's mechanicalsensors,it
is rathernoisy. To copewith noisyandambiguoussupervision
signalsnecessitatesa framework whichallows reasoningunder
uncertainty.

To summarize,ourgoalis to learnthefunctionZ = F (x; y )
from the available training data D = f x i ; y i ; zi gN

i =1 . Thus,
after learning,themechanicalbehavior z for somequeryinput
example(xq; yq) will be predictedas z = F (x q; yq). We do
not want to use manual labeling of the terrain types during
training, so the slip measurementszi , which are assumedto
have come from one of several unknown nonlinearmodels,
act as the only supervisionto the whole system.The main
problemis thatusingthemechanicalmeasurementsastheonly
groundtruth, or supervision,we have to learnboth the terrain
classi�cation and the unknown nonlinearfunctions for each
terrain. In particular, a combinatorialenumerationproblem
needsto be solved as a subproblem,which is known to be
computationallyintractable[10]. Furthermore,thesupervision
is noisy andambiguous.

IV. PROBABILISTIC FRAMEWORK FOR DIMENSIONALITY

REDUCTION USING SUPERVISION

To solve the problem de�ned in Section III, we propose
a probabilistic framework (Section IV-C) which performs
dimensionalityreduction and terrain classi�cation by using
automaticsupervisionand which can cope with both noisy
andambiguoussupervision.A maximumlikelihoodestimation



Fig. 2. Left: Graphicalmodel of unsupervisedclusteringin the initial visual space.Middle: Graphicalmodel of unsuperviseddimensionalityreduction
basedon MoFA [12], [17] (seealso [7]). Right: Graphicalmodel of automaticallysuperviseddimensionalityreductionin which mechanicalmeasurements
obtainedautomaticallyfrom the robot areusedassupervision(proposedin this paper).The automaticsupervisionin�uences the selectionof appropriatelow
dimensionalrepresentationsandhelpslearn the distinctionbetweendifferent terrain types.The observed randomvariablesaredisplayedin shadedcircles.

will bedonein this framework. To easetheexposition,we �rst
describetwo relatedprobabilisticmodels.

A. Unsupervisedclustering

The most straightforward approachto learn to classify
examplescorrespondingto different terrainsis to apply un-
supervisedlearning(clustering).The correspondinggraphical
model is shown in Figure 2, left. The parameters¹ j ; § j

are the meansand covariancesof each of the K clusters
of visual data X and ¼j are the prior probabilitiesof each
class.The indicator variablesL are latent, i.e. hidden, and
are addedto simplify the inferenceprocess;they de�ne the
class-membershipof eachtraining example, i.e. L ij = 1 if
the i th training example x i belongs to the j th class. The
model is usedto learn the parametersof eachclassand the
classi�cationboundariesbetweenthem.However, inferencein
high dimensionalspacesis numericallybrittle and is limited
by the amountandthe diversity of the availabletraining data.

B. Unsuperviseddimensionalityreduction

As operatingin high dimensionalspacesis not desirable,
we wish to �nd a lower dimensionalrepresentationU of the
initial visualspaceX . As previouslyshown [7], dimensionality
reduction can be done using Mixture of Factor Analyzers
(MoFA), which canbe expressedprobabilisticallyas follows:

P(X ; U) =
KX

j =1

P(X jU; C = j )P(UjC = j )P(C = j ) (3)

in which it is assumedthatf X jU; C = j g » N (¤ j U+ ´ j ; ª j )
and U » N (¹ j ; § j ). In other words, the joint probability of
X andU is assumedto be modeledasa mixture of K local
linear projections,or factors(seeEquation(2)) [7], [17]. In
this paperwe assumethat U are latent variables.This is a
more generalcasethan both [7] and [17]. After introducing
auxiliary latentvariablesL ij , asabove, we canwrite Equation
(3) in the following way (which correspondsto the graphical
model in Figure2, middle):

P(X ; U; L j£ 0) = P(X jU; L; £ 0)P(UjL; £ 0)P(L j£ 0);

where £ 0 = f ¹ j ; § j ; ¤ j ; ´ j ; ª j ; ¼j gK
j =1 contains the un-

known parametersof the model. Becauseof the particular
assumptionsabout the model, made in Equation (2), the

probability of a datapoint x i belongingto a terrain classj ,
given a latent representationu i , and the probability of the
latent representationu i , given the classj , areexpressedas:

P(x i ju i ; L ij = 1) =
e¡ 1

2 (x i ¡ ¤ j u i ¡ ´ j )T ª ¡ 1
j (x i ¡ ¤ j u i ¡ ´ j )

(2¼)D =2jª j j1=2

P(u i jL ij = 1) =
1

(2¼)d=2j§ j j1=2
e¡ 1

2 (u i ¡ ¹ j )T § ¡ 1
j (u i ¡ ¹ j ) ;

whereD and d are the dimensionalitiesof the initial visual
spaceand the projected representation,respectively. Those
distributions are modeled,so that a tractablesolution to the
maximumlikelihoodestimationproblemis achieved.

C. Automaticallysuperviseddimensionalityreduction

Previous approacheshave assumedthe projectionsU of
the data are known [12], [17] or have obtained them by
unsupervisedlearning[7]. In this work we wish to have the
automaticsupervisionin�uence which projectionsarechosen
to best representand consequentlydiscriminate the visual
classes.For that purposewe introducesupervisioninto the
wholemaximumlikelihoodframework, thussolvingtheinitial
problemin Equation(1), consideringall the dataavailable to
the system.That is, the ambiguousmechanicalsupervision
also takespart in the maximumlikelihooddecision.

In particular, we have two parts, a vision part, in which
dimensionalityreductionis done,and a mechanicalbehavior
part, in which the slip measurementsact assupervision.They
are linked throughthe fact that they refer to the sameterrain
type,so they bothgive someinformationaboutthis terrain.In
otherwords,during learning,we canusevisual informationto
learn somethingaboutthe nonlinearmechanicalmodels,and
conversely, the mechanicalfeedbackto supervisethe vision
baseddimensionalityreductionand terrainclassi�cation.Our
goalis to make thosetwo differentsetsof informationinteract.

The main problem is that the decision about the terrain
typesandlearningof theirmechanicalbehavior arenotdirectly
related(i.e. they are donein different,decoupledspaces)but
they do refer to the sameterrains.We cando that decoupling
by usingagain the hiddenvariablesL which de�ne the class-
membershipof eachtraining example(hereL ij = 1 if the i th

training example (x i ; y i ; zi ) has beengeneratedby the j th

nonlinearslip modelandbelongsto the j th terrainclass).As



Input: Training dataf x i ; y i ; zi gN
i =1 , wherex i are the vision domaindata,y i are the geometrydomaindata,

zi are the mechanicalsupervisionmeasurements.Output: Estimatedparameters£ of the system.

Algorithm: Initialize the unknown parameters£ 0 . Set t = 0. Repeatuntil convergence:

1. (E-step)Estimatethe expectedvaluesof L ij , u ij (we denoteu ij = E(ujx i ; L ij = 1)):

L t +1
ij =

P ( x i j L ij =1 ;£ t ) P ( y i ;z i j L ij =1 ;£ t ) ¼t
jP K

k =1
P ( x i j L ik =1 ;£ t ) P ( y i ;z i j L ik =1 ;£ t ) ¼t

k

, wherex i » N (¤ t
j ¹ t

j + ´ t
j ; ª t

j + ¤ t
j § t

j (¤ t
j )0)

u t +1
ij = ¨[(¤ t

j )0(ª t
j )¡ 1(x i ¡ ´ t

j ) + (§ t
j )¡ 1¹ t

j ], where¨ = [(§ t
j )¡ 1 + (¤ t

j )0(ª t
j )¡ 1¤ t

j ]¡ 1 .

2. (M-step)Selectthe parameters£ t +1 to maximizeCL (X ; U; Y; Z; L j£ t ) . Let l t +1
ij = L t +1

ij =
P N

r =1 L t +1
r j :

¹ t +1
j =

P N
i =1 l t +1

ij u t +1
ij ; § t +1

j =
P N

i =1 l t +1
ij u t +1

ij (u t +1
ij )0 ¡ ¹ t +1

j (¹ t +1
j )0 + ¨ ; ´ t +1

j =
P N

i =1 l t +1
ij (x i ¡ ¤ t

j u t +1
ij )

¤ t +1
j = [

P N
i =1 L t +1

ij (x i ¡ ´ t
j )(u t +1

ij )0][
P N

i =1 L t +1
ij (u t +1

ij (u t +1
ij )0 + ¨)] ¡ 1 ; ª t +1

j =
P N

i =1 l t +1
ij (x i ¡ ´ t +1

j ¡ ¤ t +1
j u t +1

ij )( x i ¡ ´ t +1
j )0

µt +1
j = (G0L t +1

j G)¡ 1G0L t +1
j Z ; (¾2

j ) t +1 =
P N

i =1 l t +1
ij (zi ¡ G(y i ; µt +1

j )) 2; ¼t +1
j =

P N
i =1 L t +1

ij =N .

3. t = t + 1

Fig. 3. EM algorithmupdates(see[1] for details).

an additional step, a dimensionalityreductionof the visual
part of the datais done,so now the supervisioncanaffect the
parametersrelatedto the dimensionalityreductiontoo. This
essentiallymeanspreferringprojectionswhich �t thedata,and
thereforealso the supervision,well. Now, given the labeling
of an example is known, the slip supervisionmeasurements
and the visual informationare independent.So, the complete
likelihoodfactorsas follows:

P(X ; U; Y; Z; L j£) =

P(X jU; L; £) P(UjL; £)
| {z }

Vision part, dim. red.

P(Y; Z jL; £)
| {z }

Autom.supervision

P(L j£)
| {z }

Prior

where£ = f ¹ j ; § j ; ¤ j ; ´ j ; ª j ; µj ; ¾j ; ¼j gK
j =1 containsall the

parametersthat need to be estimatedin the system.µj are
the parametersof the nonlinear �t of the slip data and ¾j

are their covariances(here they are the standarddeviations,
as the �nal measurementis one dimensional).The graphical
modelcorrespondingto this caseis shown in Figure2, right.
This model allows the automatically obtained mechanical
supervisionto affect both the dimensionalityreduction and
the clusteringprocess,thus improving a purely unsupervised
learningfor the purposesof the task at hand.Note that here
the lower dimensionalrepresentationis hidden and that the
supervisionpart can in�uence the visual learning and the
dimensionalityreductionthroughthe latentvariablesL ij .

The supervisionpart is as follows. The mechanicalmea-
surementdataareassumedto have comefrom a nonlinear�t,
which is modeledasa GeneralLinearRegression(GLR) [18].
GLR is appropriatefor expressingnonlinearbehavior and is
convenient for computationbecauseit is linear in terms of
the parametersto be estimated.For eachterrain type j , the
regressionfunction ~Z (Y ) = E(Z jY ) is assumedto have
come from a GLR with Gaussiannoise: f j (Y ) ´ Z (Y ) =
~Z (Y )+ ² j , where ~Z (Y ) = µ0

j +
P R

r =1 µr
j gr (Y ), ² j » N (0; ¾j ),

and gr are several nonlinear functions selectedbefore the
learninghasstarted.Someexamplenonlinearfunctionsto be

used as building blocks for slip approximationare: x, x2,
ex , logx, tanh x (those functions are used later on in our
experimentswith the differencethat the input parameteris
scaled�rst). The parametersµ0

j ; :::; µR
j ; ¾j are to be learned

for eachmodelj . We assumethe following probabilitymodel
for zi belongingto the j th nonlinearmodel conditionedon
y i :

P(zi jy i ; L ij = 1; µj ; ¾j ) =
1

(2¼)1=2¾j
e

¡ 1
2¾2

j
(zi ¡ G(y i ;µ j )) 2

;

where G(y ; µj ) = µ0
j +

P R
r =1 µr

j gr (y ) and µj =
(µ0

j ; µ1
j ; :::; µR

j ). P(y i ) is given an uninformative prior (here,
uniform over a rangeof slopes).

With the help of the hiddenvariablesL , the completelog
likelihoodfunction (CL) canbe written as:

CL (X ; U; Y; Z ; L j£) =

NX

i =1

KX

j =1

L ij [log P (x i ju i ; L ij = 1; ¤ j ; ´ j ; ª j )+

log P (u i jL ij = 1; ¹ j ; § j ) + log P (y i ; zi jL ij = 1; µj ; ¾j ) + log ¼j ]

Theintroductionof thehiddenvariablesL is crucial to sim-
plifying the problemandallows for it to be solved ef�ciently
with theExpectationMaximization(EM) algorithm[5], which
tries to maximizethe completelog likelihood(CL). The EM
algorithm updatesappliedto our formulation of the problem
areshown in Figure3 (the detailedderivationsof the updates
are provided in [1]). In brief, the algorithm performs the
following stepsuntil convergence.In the E-step,the expected
valuesof the unobserved variablesu ij and label assignments
L ij areestimated.In the M-step, the parametersfor both the
vision andthe mechanicalsupervisionsideareselected,so as
to maximize the completelog likelihood. In other words, at
eachiterationbetterparameters£ areselected,in a sensethat
they increasethe likelihoodof the availabledata.As the two
views are conditionally independent,the parametersfor the
vision and the mechanicalside are updatedindependentlyof



oneanotherin theM-step.Notethatit is throughthevariableL
thatthevisualdataandthemechanicalsupervisioninteractand
that the automaticsupervisioncanaffect the local projections
de�ning the dimensionalityreductionthroughthe variableU.
The interactionhappensin the E-stepof each iteration, by
updatingthe expectedvaluesof L and U which dependon
both the visual data and the supervision.The new variables
introducedin Figure3 arede�ned asfollows: L t

j is a diagonal
N xN matrix which has L t

1j ; :::L t
N j on its diagonal,G is a

N x(R + 1) matrix suchthat Gir = gr (y i ), Gi (R +1) = 1, and
Z is a N x1 vectorcontainingthe measurementszi [1].

D. Discussion

The main difference from previous ap-
proaches [7], [12], [17] is that we have incorporated
automatic supervision into the framework, which directly
affects the lower dimensionalityprojectionsand the terrain
classi�cation. Furthermore,the variablesU correspondingto
the low dimensionalrepresentationare latent (unlike [12],
where they are known and obtainedfrom Isomap,prior to
learning)andcanhave arbitrarymeansandcovarianceswhich
are learned(unlike [7], where they are assumedto be zero
meanand unit variance).This is an importantpoint, because
it is through the latent variables U that the supervision
can in�uence the dimensionality reduction processduring
learning.

The proposedmaximum likelihood approachsolves the
abovementionedcombinatorialenumerationproblem[10] ap-
proximatelyby producinga solution which is guaranteedto
be a local maximumonly. Indeed,the EM solution is prone
to getting stuck in a local maximum.For example,one can
imaginecreatingadversarialmechanicalmodelsto contradict
the clusteringin visual space.In practice,for the autonomous
navigationproblemwe areaddressing,our intuition is that the
mechanicalmeasurementsarecorrelatedto a largeextentwith
the vision input and will be only improving the vision based
classi�cation.This is seenlater in the experiments.

V. EXPERIMENTAL EVALUATION

In this section we apply the proposedautomaticallysu-
perviseddimensionalityreductionalgorithm to vision-based
learning of different terrain types, using slip supervision
obtainedby the robot.

The learning setup is as follows. The robot collects data
by building a map of the environment and obtaining geom-
etry and appearanceinformation for eachmap cell. When a
particularcell is traversed,the robot measuresthe amountof
slippageoccurring and saves a training example composed
of a visual featurevector (correspondingto a terrain patch),
geometry feature vector (here only the slope angle), and
the correspondingslip. The collected training examplesare
used for learning of the mapping betweenthe input visual
and geometricfeaturesand the output slip. This strategy is
commonly applied to learning traversability or other terrain
propertiesfrom vision [2], [11], [24]. VO [15] is used for
robot localization.

Fig. 4. Top: Exampleframesfrom driving on soil (left) andon gravel (right).
Bottom: Patchesfrom the classesin our dataset.The variability in texture
appearanceis one of the challengespresentin our applicationdomain.The
datasetis collectedundervariousweatherconditions.

A. Dataset

The datasethasbeencollectedby an autonomousLAGR1

robot while driving on three terrainswith different mobility
in a natural park: soil, gravel and asphalt.Figure 4 shows
example patchesfrom the terrains and Figure 1 shows the
collectedslip measurementsin the dataset.It is not known
to the algorithm which terrain classesthe input examples
belongto: the slip andslopemeasurements(Figure1) arethe
only information to be usedfor automaticsupervision.The
datasetis quite challengingas it is obtainedin outdoor, off-
roadenvironments.In particular, a lot of intra-classvariability
can be observed in the appearanceof the terrain patchesand
the mechanicalslip measurementsarevery noisy.

B. Visual representation

Each terrain patch is representedas the frequency of oc-
currence(i.e. a histogram)of visual features,called textons,
within a patch [23]. The textons are collected by using k-
meansof 5x5 pixel neighborhoodsextractedat randomfrom
a pool of trainingimagescomingfrom all theclasses(see[23]
for details). In this case, 5 textons are selectedfor each
terrain classin the data,constructinga 15-dimensionalinput
featurevector. This representation,basedon both color and
texture, hasbeenshown to achieve satisfactory classi�cation
resultsfor generictextures[23], aswell asfor naturaloff-road
terrains[2].

1LAGR standsfor LearningApplied to GroundRobotsand is an experi-
mentalall-terrainvehicleprogramfundedby DARPA



C. Mechanical supervision

Robot slip is de�ned as the differencebetweenthe com-
mandedvelocity of the robot, obtainedfrom its kinematics
model and wheel encodersensors,and its actual velocity
betweentwo consecutive steps[2]. The VO algorithm [15],
running onboard the robot, is used to compute its actual
velocity. Thus, the slip-basedsupervisionis measuredfully
automaticallyby the robot. In theseexperimentswe focus
on slip in the forward motion direction as dependenton the
longitudinalslope.Theterrainslopeis retrievedby performing
a least-mean-squaresplane�t on theaverageelevationsof the
mapcells in a 4x4 cell neighborhood.

D. Experimentalresults

In this sectionwe presentexperimentalresultsof thedimen-
sionality reductionwith automaticsupervision.We quantita-
tively evaluatethe performanceof the proposedalgorithmfor
automaticallysupervisedlearning(Figure 2, right) compared
to both unsupervisedlearning (Figure 2, middle [7]) and
humansupervisedlearning.While testing,terrainclassi�cation
is performed�rst to �nd the most likely classindex j ¤ given
the input dataX (let us denoteP(L j ) = P(C = j )):

j ¤ = ar gmax j P (C = j jX ) / P (X jC = j )P (C = j ) =Z

u

P (X ju; L j )P (ujL j )duP (L j ) ¼ P (X jUM L ; L j )P (L j );

in which we approximatethe integral by using the maximum
likelihoodlower dimensionalprojection(UM L ). Notethatonly
the visual input is used to make this decision. Then, the
expectedslip is predictedby evaluatingthe j ¤-th learnedslip
modelf j ¤ (Y ) = µ0

j ¤ +
P R

r =1 µr
j ¤ gr (Y ) for the given slopeY .

The averageterrainclassi�cation andslip predictionerrors
and their standarddeviations across50 independentruns are
shown in Figure 5. We comparelearningand dimensionality
reductionwithoutsupervision,with automaticsupervision,and
with human supervision.We have about » 1000 examples
which aresplit randomlyinto 70% training and30% testsets
in eachrun. As the correct slip modelsare not known, the
ultimatetestof performanceis by comparingthepredictedslip
to theactualmeasuredslip on a testset(not usedin training).
Slip predictionerror is computedas: Err=

P N
i =1 jF (x i ; y i ) ¡

zi j=N , whereF (x i ; y i ) is thepredictedandzi is thetargetslip
for a testexample(x i ; y i ). Theterrainclassi�cationresultsare
evaluatedby comparingto humanlabeledterrains.Whenusing
humansupervision,the class-membershipof eachexampleis
known, but theparametersof eachclassneedto be estimated.
The latter is equivalentto doing FactorAnalysisin eachclass
independently. Dueto someoverlapbetweentheclassesin the
originalvisualspace,theclassi�cationwith humansupervision
canstill incur somenonzerotesterror in terrainclassi�cation.
To re�ect themonotonicnatureof slip, anadditionalconstraint
(µj ¸ 0) is imposed(see[1] for details).

As seenin Figure5, learningwith automaticallysupervised
dimensionalityreductionoutperformsthe unsupervisedlearn-
ing method and decreasesthe gap to learning with human
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Fig. 5. Averagetest resultsfor terrain recognition(left) andslip prediction
(right). Comparisonto a baselinenonlinearregressionmethodis alsoshown.
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Fig. 6. The learnedslip modelsand the classi�cation of the test examples
when learning with automaticsupervision(left) and learning with human
superivsion (right). The examplesare marked accordingto their predicted
terrainclasslabels(the colorsandmarkersareconsistentwith Figure1).

supervision.More precisely, learning with automaticsuper-
vision achieves about 42% and 45% of the possiblemargin
for improvement betweenthe unsupervisedand the human
supervisedlearning for terrain classi�cation and slip predic-
tion, respectively. Naturally, for thetypeof supervisionusedin
theseexperiments(Figure1), we cannotexpect to fully close
thegap to humansupervision,becausethesupervisionsignals
arenot suf�ciently well separable.The improvedperformance
of the superviseddimensionalityreductioncomparedto the
unsupervisedone is due to selectingmore appropriatelow
dimensionalvisual representationswhich provide for better
discrimination among the terrain classesand respectively
for learning of more accurateslip models for each terrain.
Comparingthe results to [3] we can seethat working with
more descriptive high dimensionalrepresentationsis instru-
mental to achieving better performance.At the sametime,
as the representationis more powerful, there is a smaller
margin for improvement betweenthe unsupervisedand the
humansupervisedlearning.We also comparedthe resultsto
a baselinenonlinearregressionmethod,k-NearestNeighbor,
which learns directly the mapping from the inputs (visual
featuresx and slope y) to the output (slip z) and doesnot
apply dimensionalityreductionas an intermediatestep.Note
that directly learningthe desiredoutputs,asis with k-Nearest
Neighbor, important information about the structureof the
problem,namelythatthereareseveralunderlyingterraintypes
on which potentiallydifferentslip behaviors occur, is ignored.
As seenin Figure5, the k-NearestNeighboris outperformed
by the other threemethods.

Thelearnednonlinearmodelsfor oneof therunsareshown



in Figure 6. The resultantslip models when learning with
automaticsupervisionareverysimilar to theonesgeneratedby
humansupervision,which is dueto having learnedthecorrect
terrainclassi�cationin thevisualspace.Notethat,althoughthe
correctslip modelshave beenlearned,therearestill examples
which are misclassi�ed for both learning scenariosbecause
only the visual information is usedduring testing. The slip
model used here has less inputs than in [2] and its main
purposeis to act as supervisionrather than achieve a good
approximationof theslip signal.Now, giventhat therobothas
automaticallylearnedhow to visually discriminateterrainsby
using the slip signalsas supervision,the �nal slip prediction
resultscanbe further improved by applyinga moreadvanced
slip learningalgorithm,e.g.by taking into considerationmore
inputs [2].

Our resultsshow that using additional, automaticallyob-
tained, signals as supervisionis worthwhile: it outperforms
purely unsupervisedvision-basedlearning and has the po-
tential to substitute the expensive, tedious, and inef�cient
humanlabelingin applicationsrelatedto autonomousnaviga-
tion. Secondly, as more descriptive high dimensionalfeature
representationsarecrucial to achieving betterrecognitionper-
formance,performing dimensionalityreductionand utilizing
theautomaticsupervisionin theprocessis moreadvantageous
thanworking with simpler lower dimensionalrepresentations.

VI . CONCLUSIONS AND FUTURE WORK

We have proposeda novel probabilistic framework for
dimensionalityreductionwhich takesadvantageof ambiguous
andnoisysupervisionobtainedautomaticallyfrom the robot's
onboardsensors.As a result, simultaneouslearning of the
lowerdimensionalrepresentation,theterrainclassi�cation,and
the nonlinear slip behavior on each terrain is done by us-
ing only automaticallyobtainedmeasurements.The proposed
methodstandsin betweenreasoningunderuncertaintyusing
probabilistic models and retrieving the underlying structure
of the data(i.e. dimensionalityreduction).The impactof the
proposedmethodof automaticallysuperviseddimensionality
reduction is that: 1) a better visual representationcan be
createdby utilizing thesupervisionfrom therobot,or the task
at hand;2) the robot can learnaboutterrainsandtheir visual
representationby usingits own sensorsassupervision;3) after
the learninghascompleted,theexpectedmobility behavior on
different terrainscanbe predictedremotely.

We have shown experimentson a datasetcollectedwhile
driving in the �eld, in which different terrain types are
learned better from both vision and slip supervision than
from vision aloneandunsuperviseddimensionalityreduction.
Signi�cant improvements,currently under investigation, can
be done by introducing temporal/spatialcontinuity to the
consecutive/neighboringterrain measurements.Extendingthe
methodto online learningis an importantfuture direction, in
which themainchallengesaredeterminingwhich examplesto
keepin memoryandestimatingthe numberof terrains.
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