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Abstract— This paper considersthe problem of learning to rec-
ognizediffer ent terrains from color imagery in a fully automatic
fashion, using the robot's mechanical sensorsas supetvision. We
presenta probabilistic framework in which the visual information
and the mechanical supervision interact to learn the available
terrain types. Within this framework, a novel supewised dimen-
sionality reduction method is proposed,in which the automatic
supewision provided by the robot helps select better lower
dimensionalrepresentationsmore suitable for the discrimination
task at hand. Incorporating supetvision into the dimensionality
reduction procesds important, assometerrains might be visually
similar but induce very different robot mobility. Therefore,
choosing a lower dimensional visual representation adequately
is expectedto improve the vision-based terrain learning and
the nal classication performance. This is the rst work that
proposesautomatically superviseddimensionality reduction in a
probabilistic framework using the superision coming from the
robot's sensors.The proposedmethod standsin betweenmethods
for reasoningunder uncertainty using probabilistic models and
methodsfor learning the underlying structure of the data.

The proposed approach has been tested on eld test data
collected by an autonomous robot while driving on soil, gravel
and asphalt. Although the supemwision might be ambiguous
or noisy, our experiments shov that it helps build a more
appropriate lower dimensionalvisual representationand achieves
improved terrain recognition performance compared to unsuper
vised learning methods.

I. INTRODUCTION

We considerthe problem of learningto recognizeterrain
types from color imagery for the purposesof autonomous
navigation. This is necessarpecausdlifferentterrainsinduce
differentmobility limitations on the vehicle.For example,the
robot might get stuckin sandor mud, so it hasto learn to
avoid suchterrains.Visual informationis usedas a forward-
looking sensorto determinethe terrain type prior to the
robot entering the terrain, so that a better planning can be
done. In this paperthe robot learnsautomatically using its
own mechanicalmeasurementwhile traversing the terrains.
In particular the amountof robot slip is usedas supervision
for learningdifferentterraintypesandthe robot's mobility on
them.

Learning fully automaticallyis important, becausein the
contt of autonomousavigation huge amountsof dataare
available and providing manualsupervisionis impractical. To
avoid manuallabeling, the so-calledself-supervisedearning
methodshave proposedto use the vehicle’s sensorsas su-
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pervision for learning [4], [11], [13], [16], [19]. The key
ideaof self-supervisedearningis that one of the sensorscan
provide the groundtruth for learningwith anothersensorand
the underlying assumptionis that the former sensorcan be
reliably clusteredor thresholded4], [11], [13], [16].

However, somesignalsobtainedfrom the robotdo not nec-
essarilyprovide a unigueclusteringinto well separablelasses,
but canbe still usefulfor providing supervisionFor example,
differentterraintypesmightinducesimilar robot mobility, i.e.
the supervisionmight be ambiguous In the particular case
of slip, which is slope dependentthe robot can have the
sameslip on at ground but different slip when traversing
slopes.Our previous work [3] proposeda uni ed learning
framework for this case,but its limitation is that the visual
representatios low dimensionabndthe methodcanbecome
numerically brittle or require prohibitive amountsof training
datafor higherdimensionalnputs.Roboticsapplicationsoften
needto processdata obtainedfrom multiple sensorswhich
is high dimensional.In particular featurerepresentationsf
visual dataare typically of high dimensionality especiallyif

ne distinctionsbetweenterrainsneedto be doneor a lot of
intra-classvariability hasto be accommodated.

To cope with high dimensionalinput spaceswe propose
to use the supervision,automaticallyobtainedby the robot,
to affect the dimensionalityreductionprocess.The intuition
is that two visually similar terrainswhich are not normally
discriminatedn the visual spaceandare mappedo the same
clusterin thelower dimensionakpacemight be discriminated
properly after introducing the supervision.In our casethe
mechanicakupervisionis in the form of robot slip and might
be ambiguousor noisy To solve the problemin this setup,
we presenta probabilisticframevork in which the mechanical
supervisiorprovidedby therobotis usedto learntherepresen-
tationandclassi cationof terraintypesin the visual spaceau-
tomatically This essentiallyneanshaving the supervisiorhelp
choosemore appropriateand meaningful,with respectto the
learningtask,low dimensionalprojectionsof the initial visual
data. Most previous dimensionalityreductiontechniquesare
completelyunsupervisedl17], [21], whereasherewe propose
to learna moreusefullower dimensionalisual representation
which at the sametime allows for better discrimination of
terrainsdeterminedo bedifferentby theautomatianechanical
supervisiorfrom therobot. The signi cance of the approackhis



thata fully automatidearningandrecognitionof terraintypes
can be performedwithout using humansupervisionfor data
labeling. Moreover, the methodallows the supervisionsignal
obtainedby the robot to be noisy or ambiguousj.e. it might
not have a one-to-onecorrespondenct the visual data.

1. PREVIOUS WORK

Learning to recognizeterrains from vision and to deter
mine their characteristicsregarding traversability or robot
mobility has been widely applied for autonomousvehi-
cles [11], [16], [24]. However, current methods are not
automatedenough and human supervisionor some other
heuristicsarestill neededo determinetraversability[9], [16].
Recently the conceptof learningfrom the vehicle’s sensors,
referred to as learning from proprioception [16], or self-
supervisedearning[4], [13], [19], hasemepged.This ideahas
proved to be particularly useful for extendingthe perception
range[4], [9], [16], [19] which is crucial to increasingthe
speedandefciency of therobot[4]. Self-supervisedearning
approachesequire good separabilityin the spaceof sensor
responsesso that a unigueterrain classassignmenfor each
example is obtained.The latter is not always possible,e.g.
driving at slower speed cannot produce de nitive enough
vibration patternsto discriminateterrains[6].

Dimensionalityreductiontechniquesave alsobecomevery
popularin roboticsapplications pecausdhe input visual data
is of high dimensionalityandmoreef cient representationare
needed8], [12], [22]. Most previous dimensionalityreduction
methodsare unsupervised7], [17], [21], as they have been
intended for data representationHowever, in our robotics
application whereadditionalmechanicakensomeasurements
areavailable, it is morerationalto usethemassupervisionin
selectingbetterlower dimensionaldatarepresentationSome
recentwork hasproposedo includeprior informationinto the
dimensionalityreduction framework, for example, by using
known classlabels [20] or by assumingthe projections of
someexamplesare given [25]. In our case,the supervision,
i.e. the knowledgeaboutclass-membershigs fairly weakand
neitherof theseapproachesan be applied.

This work extends the probabilistic formulation for di-
mensionality reduction using Mixture of Factor Analyzers
(MoFA) [7], [12], [17] with the major distinction that addi-
tional measurementgbtainedindependentlyby the robot, are
usedas supervisionin the dimensionalityreductionprocess.
Moreover, in [17], [12] thelower dimensionalityrepresentation
is obsered (obtainedby applying the unsuperviseddimen-
sionality reductionalgorithm Isomap[21] prior to learning),
whereashere it is unknovn and needsto be learned.The
particularapplicationaddressesecognizingterrain typesand
inherent mobility related to robot slip using visual input,
similarto [2], with thedifferencethatlearningis donewith au-
tomatic supervision provided by the robot,anddoesnot need
manuallabeling of terraintypes,asin [2]. Being ableto pre-
dict certainmechanicakerrain propertiesremotelyfrom only
visual information and other sensorsonboardthe vehicle has

signi cant importancein autonomousavigation applications,
becausamoreintelligent planningcould be done[16], [24].

I1l. PROBLEM FORMULATION

Considetthe problemof predictingthe mobility characteris-
tics Z of therobotin eachmapcell of the forthcomingterrain
using as input the visual informationx 2 - in the cell and
someinformationaboutthe terraingeometryy 2 ©, e.g.local
terrainslope(- is the visual space®© is the spaceof terrain
slopes).The input variablesx andy can be obtainedby the
robot from a distance which will allow the predictionof the
outputvariablefrom a distancetoo. Let us denotethe function
that needsto be evaluatedasZ = F(x;y).

This problemcanbe reducedo recognizingthe terraintype
from visualinformation. Thatis, we canassumehatthereare
alimited number(K ) of terraintypesthat canbe encountered
and that on eachterrain type the robot experiencedifferent
behaior (e.g. mobility):

Fxiy) = fi(y); 1)

where- ; 2 - aredifferentsubsetsn the visual space- ; \
-j = ;i 6 ] andf; (y) are(nonlinear)functionswhich work
in the domain© andwhich changetheir behaior depending
on the terrain. In other words, different mobility behaiors
occurondifferentterraintypeswhich aredeterminedy visual
information. Now the questionis how to learn the mapping
Z F(x;y) from training dataD = f(xi;yi);zigiNzl,
wherex; are the visual representationsf patchesfrom the
obsenredterrain,y; arethe terrainslopes,andz; arethe slip
measurement&henthe robot traversesthat terrain.

The input spaceX, representingthe visual data, can be
of a very high dimension,which impedesworking with it.
Instead,we work with a lower dimensionalembeddingU of
the input spaceX . For that purposewe needto learn the
embeddingR : X ! U itself. As thelearningof this mapping
requiresprohibitive amountof datawheneer the inputis high
dimensional,we assumesimilar to [7], [12], thatit takes a
particularform. Namely:

ifXZ-J‘

)

where g; is the projection matrix and uj, v; are normally
distriouted: u; » N (*;;8;), v; » N('j;2;). Thatis,
we assumethat a locally linear mappingis a good enough
approximatiorfor patcheghatbelongto the sameterrainclass.
Figurel visualizesthe problemwhenmeasurementsf slip
as a function of terrain slope are usedas supervision.Robot
slip is a measureof the lack of progressand is essentially
the complementof robot mobility [2]. The measurementm
Figure 1 are obtainedfrom actual robot traversalsand are
computedas the differencebetweenVisual Odometry (VO)
basedpose estimates[15] and the pose estimatesfrom the
kinematic model of the robot. The mechanicalslip mea-
surementsare receved completelyautomatically as only the
vehicle’s sensorsare neededto computeslip. A nonlinear
model can approximatethe slip behaior as a function of

Xx=ugjuj+v; forx2-;
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Fig. 1. Left: Slip measurement® be usedasautomaticsupervisionin our learningsetup.Eachtraining exampleconsistsof animagepatchrepresentedsa
high dimensionalpoint and a correspondingslip measurementepresentea@s a function of the estimatedslopeangle.Middle: Lower dimensionalprojections
of the visual data, obtainedby the unsupervisedlimensionalityreductionalgorithm Isomap[21]. The rectangleis expandedto the right and visualizesthe
original image patchesThe groundtruth terraintypesin this gure are provided by humanlabeling, but our systemworks without humansupervisionand
relies on the goodness-of- tof nonlinearslip modelsto the slip measurementas automaticsupervisionto learn the terrain representatiorfdimensionality
reduction),terrain classi cation, and the nonlinearslip modelsfrom the available training data.

slope for eachterrain type. Thesemodelsessentiallyact as
supervision,but they are unknavn and have to be learned
from the data.The slopescanbe easily estimatedy the robot
remotely using rangedatafrom stereo,ladar etc., and a tilt

sensoron the robot, which is readily available from the IMU,

for example.We consideronly the slip in the forward motion
direction as dependenibn the longitudinal slope, similar to

slip measurementdonefor the Mars ExplorationRover [14],

which is a simplerand more straightforvard representatioof

slip thanin [2]. This representatioris also more corvenient
for usingtheslip measurement@ssupervisiorduringlearning.
After the robot haslearnedhow to visually discriminatethe
terrains,it is concevable to learn more complec slip models
using additional input variables(e.g. both longitudinal and
lateral slopes,roughnessetc.),asin [2].

Figure 1 also shaws the vision part of the input data,
representedas describedin SectionV-B, projectedinto 2D
by usingthe unsupervisedlimensionalityreductionalgorithm
Isomap[21]. As seen,thereis a signi cant overlap between
terrain classeswhich have visually similar patches.Because
of the overlap, performingunsupervisedpurely vision-based
classi cation is not sufcient. So, to be able to learn to
correctly discriminatetheseterrainsand predict a potentially
differentmobility behaior on them,someform of supervision
is needed.The key ideais that the dimensionalityreduction
procescanalsotake advantageof the supervisiorinformation
obtainedfrom additionalmechanicakensors.

The main problemin our formulationis that the slip signal
to be used as supervisioncan be of very weak form and
using slip measurementas supervisioncannotbe reducedto
supervisedearning,asin [4], [11]. In particular becauseof
the nonlinearity of the slip modelsf;(y), it is possiblethat
some of the models overlap in parts of their domain (i.e.
for somei; j;i 6 j, fi(y) =~ fj(y), fory 2 ©g, for some
©o U ©). For example,severalterrainsmight exhibit the same
slip for » O* slope,asseenin Figurel, or simply two visually
differentterraintypesmight have the sameslip behaior. Since

someof the supervision(for someof the training examples)
is inherently ambiguous.the slip supervisionsignals cannot
be directly clusteredinto well separableclassesHowever, if
two terrainsexhibit differentslip behaior for ary sloperange,
the supervisionshouldstill be ableto force a betterdiscrim-
ination in the visual space even thoughnot all examplescan
de niti vely exercisesupervisionTheintuition is thatexamples
for which the supervisionsignal is strong will propagte it
to the examplesof ambiguoussupervisionin the sameclass
through their visual similarity. Finally, asthe supervisionis
collectedautomaticallyby the robot's mechanicalsensorsijt
is rathernoisy. To copewith noisyandambiguoussupervision
signalsnecessitateaframevork which allows reasoningunder
uncertainty

To summarizepurgoalis to learnthefunctionZ = F (x;y)
from the available training dataD = fX;;y;; z gi'\‘zl. Thus,
afterlearning,the mechanicabehaior z for somequeryinput
example(Xq;yq) Will be predictedasz = F(xq;yq). We do
not want to use manuallabeling of the terrain types during
training, so the slip measurements;, which are assumedo
have come from one of several unknovn nonlinearmodels,
act as the only supervisionto the whole system.The main
problemis thatusingthe mechanicameasurementasthe only
groundtruth, or supervisionwe have to learnboth the terrain
classi cation and the unknavn nonlinearfunctions for each
terrain. In particular a combinatorial enumerationproblem
needsto be solved as a subproblemwhich is known to be
computationallyintractable[10]. Furthermorethe supervision
is noisy and ambiguous.

IV. PROBABILISTIC FRAMEWORK FOR DIMENSIONALITY
REDUCTION USING SUPERVISION

To solwe the problemde ned in Sectionlll, we propose
a probabilistic framewvork (Section IV-C) which performs
dimensionality reduction and terrain classi cation by using
automaticsupervisionand which can cope with both noisy
andambiguoussupervisionA maximumlik elihoodestimation
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Fig. 2. Left: Graphicalmodel of unsupervisectlusteringin the initial visual space.Middle: Graphicalmodel of unsupervisedlimensionalityreduction

basedon MoFA [12], [17] (seealso[7]). Right: Graphicalmodel of automaticallysuperviseddimensionalityreductionin which mechanicaimeasurements
obtainedautomaticallyfrom the robot are usedas supervision(proposedn this paper).The automaticsupervisionin uencesthe selectionof appropriatdow
dimensionalrepresentationand helpslearn the distinction betweendifferentterraintypes. The obsered randomvariablesare displayedin shadedcircles.

will bedonein this frameavork. To easethe exposition,we rst
describetwo relatedprobabilisticmodels.

A. Unsupervisectlustering

The most straightforvard approachto learn to classify
examplescorrespondingo different terrainsis to apply un-
supervisedearning(clustering).The correspondinggraphical
model is showvn in Figure 2, left. The parameters!;§;
are the meansand covariancesof each of the K clusters
of visual dataX and¥%; are the prior probabilitiesof each
class. The indicator variablesL are latent, i.e. hidden, and
are addedto simplify the inferenceprocess;they de ne the
class-membershipf eachtraining example,i.e. Lj = 1 if
the i training example x; belongsto the | class. The
model is usedto learn the parameterof eachclassand the
classi cationboundariepetweerthem.However, inferencein
high dimensionalspacess numerically brittle andis limited
by the amountandthe diversity of the availabletraining data.

B. Unsupervisedlimensionalityreduction

As operatingin high dimensionalspacesis not desirable,
we wishto nd a lower dimensionalrepresentatiotJ of the
initial visualspaceX . As previously shavn [7], dimensionality
reduction can be done using Mixture of Factor Analyzers
(MoFA), which canbe expressedorobabilisticallyasfollows:

P(X;U)=  PXju,C=j)PUJC=])P(C=]) (3)
j=1

in whichit is assumedhatf X jU;C = jg» N (a;U+",;2;)
andU » N (*;;8;). In otherwords, the joint probability of
X andU is assumedo be modeledas a mixture of K local
linear projections,or factors(see Equation(2)) [7], [17]. In
this paperwe assumethat U are latent variables.This is a
more generalcasethan both [7] and [17]. After introducing
auxiliary latentvariablesl  , asabove, we canwrite Equation
(3) in the following way (which correspondgo the graphical
modelin Figure 2, middle):

P(X:U;LjEo) = P(XjU;L; £0)P(UjL; £0)P(LJE o):

where £o = f1;;8§;;m;;7;% ;%9 containsthe un-
known parametersof the model. Becauseof the particular
assumptionsabout the model, made in Equation (2), the

probability of a datapoint x; belongingto a terrain classj,
given a latent representatioru;j, and the probability of the
latentrepresentation;, given the classj, are expresseds:
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whereD andd are the dimensionalitiesof the initial visual
spaceand the projected representationyespectiely. Those
distributions are modeled,so that a tractablesolution to the
maximumlik elihood estimationproblemis achiered.

P(uijLj = 1) =

C. Automaticallysuperviseddimensionalityreduction

Previous approacheshave assumedthe projectionsU of
the data are known [12], [17] or have obtained them by
unsupervisedearning[7]. In this work we wish to have the
automaticsupervisionin uence which projectionsare chosen
to best representand consequentlydiscriminate the visual
classes.For that purposewe introduce supervisioninto the
whole maximumlik elihoodframework, thussolving the initial
problemin Equation(1), consideringall the dataavailable to
the system.That is, the ambiguousmechanicalsupervision
alsotakes partin the maximumlik elihood decision.

In particular we have two parts, a vision part, in which
dimensionalityreductionis done,and a mechanicabehaior
part,in which the slip measurementact assupervision.They
arelinked throughthe fact that they refer to the sameterrain
type, sothey both give someinformationaboutthis terrain.In
otherwords,during learning,we canusevisualinformationto
learn somethingaboutthe nonlinearmechanicaimodels,and
conversely the mechanicalfeedbackto supervisethe vision
baseddimensionalityreductionand terrain classi cation. Our
goalis to make thosetwo differentsetsof informationinteract.

The main problemis that the decision about the terrain
typesandlearningof their mechanicabehaior arenotdirectly
related(i.e. they aredonein different, decoupledspacesut
they do refer to the sameterrains.We cando that decoupling
by usingagain the hiddenvariablesL which de ne the class-
membershipf eachtraining example(hereL;; = 1 if theit
training example (x;;yi;z) hasbeengeneratedoy the j
nonlinearslip modelandbelongsto thej " terrainclass).As
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Input: Training dataf x;;yi;z g\, , wherex; arethe vision domaindata,y; arethe geometrydomaindata,
z; arethe mechanicakupervisionmeasurement®Output: Estimatedparameter€ of the system.
Algorithm: Initialize the unknavn parameter£ °. Sett = 0. Repeatuntil corvergence:
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Fig. 3. EM algorithmupdates(see[1] for details).

an additional step, a dimensionalityreduction of the visual
part of the datais done,so now the supervisioncanaffect the
parametergelatedto the dimensionalityreductiontoo. This
essentiallymeangpreferringprojectionswhich t thedata,and
thereforealso the supervision,well. Now, given the labeling

used as building blocks for slip approximationare: x, x2,
e*, logx, tanh x (thosefunctions are used later on in our
experimentswith the differencethat the input parameteris
scaled rst). The parametersplp; n5 MR % areto be learned
for eachmodelj . We assumehe following probability model

of an exampleis known, the slip supervisionmeasurements for z; belongingto the j " nonlinearmodel conditionedon

andthe visual information areindependentSo, the complete
likelihoodfactorsasfollows:
P(X;U Y, Z;LjE) =

PXIUL §)PUIL £} POGZILIE) P(HE)

Vision part, dim.red.  Autom.supervision Prior

wheref = f1;8;;0;;7;%:14:%:%d<, containsall the
parameterdhat needto be estimatedin the system.|; are
the parametersof the nonlinear t of the slip dataand %
are their covariances(here they are the standarddeviations,
asthe nal measuremenis one dimensional).The graphical
model correspondingo this caseis shavn in Figure 2, right.
This model allows the automatically obtained mechanical
supervisionto affect both the dimensionalityreductionand
the clusteringprocessthus improving a purely unsupervised
learningfor the purposesof the task at hand. Note that here
the lower dimensionalrepresentations hidden and that the
supervisionpart can in uence the visual learning and the
dimensionalityreductionthroughthe latentvariablesL j .
The supervisionpart is as follows. The mechanicalmea-
surementdataare assumedo have comefrom a nonlinear t,
which is modeledasa GeneralLinear RegressionGLR) [18].
GLR is appropriatefor expressingnonlinearbehaior andis
convenient for computationbecauset is linear in terms of
the parameterdo be estimated.For eachterrain type j, the
regressionfunction Z(Y) = E(ZjY) is assumedto have
come from a GLR with GauTs_glammse fi(Y) ™ Z(Y) =
Z(Y)+2,whereZ(Y) = W+ [ W g,(Y) i » N(©0;%),
and g are several nonlinear functions selectedbefore the
learninghasstarted.Someexamplenonlinearfunctionsto be

Yi:
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where G(y W) = p] + rlp]gr(y) and | =
(p] p] '"'p] ). P(yj) is given an uninformatve prior (here,
uniform over a rangeof slopes).
With the help of the hiddenvariablesL, the completelog
likelihoodfunction (CL) canbe written as:

P(zijyi;Lij = L:%) =

DA

CL(X;U;Y;Z;LjE) =
i=1 j=1
logP(uijLij = 1;%;;8j)+ logP(yi;zijLij = 1,14:%) + log¥%]

Lij log P(xjjui;Lij = Lyaj; 5.2 5)+

The introductionof the hiddenvariablesL is crucialto sim-
plifying the problemandallows for it to be solved ef ciently
with the ExpectatiorMaximization(EM) algorithm[5], which
tries to maximizethe completelog likelihood (CL). The EM
algorithm updatesappliedto our formulation of the problem
areshavn in Figure 3 (the detailedderivationsof the updates
are provided in [1]). In brief, the algorithm performs the
following stepsuntil convergence.In the E-step,the expected
valuesof the unobsered variablesu; andlabel assignments
L areestimatedln the M-step,the parametersor both the
vision andthe mechanicakupervisionside are selectedso as
to maximize the completelog likelihood. In other words, at
eachiterationbetterparameter€ areselectedjn a sensehat
they increasethe likelihood of the available data.As the two
views are conditionally independentthe parameterdor the
vision and the mechanicakide are updatedindependentlyof



oneanothelin the M-step.Notethatit is throughthevariableL

thatthevisualdataandthe mechanicasupervisiorinteractand
that the automaticsupervisioncan affect the local projections
de ning the dimensionalityreductionthroughthe variableU.

The interaction happensin the E-stepof eachiteration, by

updatingthe expectedvaluesof L and U which dependon

both the visual data and the supervision.The new variables
introducedin Figure3 arede ned asfollows: L} is adiagonal
NxN matrix which hasL};;:::LY; on its diagonal,G is a
N x(R + 1) matrix suchthatG;; = gr(yi), Gjr+1) = 1, and
Z is a N x1 vector containingthe measurements; [1].

D. Discussion

The main difference  from previous ap-
proaches [7], [12], [17] is that we have incorporated
automatic supervisioninto the framework, which directly
affects the lower dimensionality projectionsand the terrain
classi cation. Furthermore the variablesU correspondingo
the low dimensionalrepresentatiorare latent (unlike [12],
where they are known and obtainedfrom Isomap, prior to
learning)andcanhave arbitrarymeansandcovariancesvhich
are learned(unlike [7], wherethey are assumedo be zero
meanand unit variance).This is an importantpoint, because
it is through the latent variables U that the supervision
can in uence the dimensionality reduction processduring
learning.

The proposedmaximum likelihood approachsolves the
aborementioneccombinatorialenumeratiorproblem[10] ap-
proximately by producinga solution which is guaranteedo
be a local maximumonly. Indeed,the EM solution is prone
to getting stuck in a local maximum. For example, one can
imaginecreatingadwersarialmechanicamodelsto contradict
the clusteringin visual spaceln practice for the autonomous
navigation problemwe areaddressingour intuition is thatthe
mechanicameasurementarecorrelatedo a large extentwith
the vision input and will be only improving the vision based
classi cation. This is seenlater in the experiments.

V. EXPERIMENTAL EVALUATION

In this sectionwe apply the proposedautomatically su-
perviseddimensionalityreduction algorithm to vision-based
learning of different terrain types, using slip supervision
obtainedby the robot.

The learning setupis as follows. The robot collects data
by building a map of the environmentand obtaining geom-
etry and appearancénformation for eachmap cell. When a
particularcell is traversed,the robot measureshe amountof
slippage occurring and saves a training example composed
of a visual featurevector (correspondingo a terrain patch),
geometry feature vector (here only the slope angle), and
the correspondingslip. The collectedtraining examplesare
usedfor learning of the mapping betweenthe input visual
and geometricfeaturesand the output slip. This stratey is
commonly applied to learning traversability or other terrain
propertiesfrom vision [2], [11], [24]. VO [15] is usedfor
robot localization.

Gravel Soil

Asphalt

Fig. 4. Top: Exampleframesfrom driving on soil (left) andon gravel (right).
Bottom: Patchesfrom the classesin our dataset.The variability in texture
appearancés one of the challengespresentin our applicationdomain. The
dataseis collectedundervariousweatherconditions.

A. Dataset

The datasethas beencollectedby an autonomoud AGR!
robot while driving on threeterrainswith different mobility
in a natural park: soil, gravel and asphalt.Figure 4 shavs
example patchesfrom the terrainsand Figure 1 shaws the
collectedslip measurementin the dataset.lt is not knovn
to the algorithm which terrain classesthe input examples
belongto: the slip and slopemeasurement@~igure 1) arethe
only information to be usedfor automaticsupervision.The
datasetis quite challengingasit is obtainedin outdoor off-
roadervironments.n particular alot of intra-classvariability
canbe obsered in the appearancef the terrain patchesand
the mechanicaklip measurementare very noisy.

B. Misual representation

Eachterrain patchis representeds the frequeng of oc-
currence(i.e. a histogram)of visual features,called textons,
within a patch [23]. The textons are collected by using k-
meansof 5x5 pixel neighborhood®xtractedat randomfrom
apool of trainingimagescomingfrom all the classegsee[23]
for details). In this case,5 textons are selectedfor each
terrain classin the data, constructinga 15-dimensionalnput
featurevector This representationpbasedon both color and
texture, hasbeenshavn to achieve satistctory classi cation
resultsfor generictextures[23], aswell asfor naturaloff-road
terrains[2].

1LAGR standsfor Learning Applied to Ground Robotsandis an experi-
mentalall-terrain vehicle programfundedby DARPA



C. Medhanical supervision

Robot slip is de ned as the differencebetweenthe com-
mandedvelocity of the robot, obtainedfrom its kinematics
model and wheel encodersensors,and its actual velocity
betweentwo consecutie steps[2]. The VO algorithm [15],
running onboard the robot, is usedto computeits actual
velocity. Thus, the slip-basedsupervisionis measuredully
automaticallyby the robot. In these experimentswe focus
on slip in the forward motion direction as dependenbn the
longitudinalslope.Theterrainslopeis retrieved by performing
aleast-mean-squargdane t onthe averageelevationsof the
map cellsin a 4x4 cell neighborhood.

D. Experimentalresults

In this sectionwe presenexperimentakesultsof thedimen-
sionality reductionwith automaticsupervision.We quantita-
tively evaluatethe performanceof the proposedalgorithmfor
automaticallysupervisedearning (Figure 2, right) compared
to both unsupervisedlearning (Figure 2, middle [7]) and
humansupervisedearning.While testing terrainclassi cation
is performedrst to nd the mostlikely classindex j ° given
theinput dataX (let usdenoteP(L;) = P(C = j)):

j" = argmax; P(C = jjX)/ P(XjC=j)P(C=])=

P (X ju; Lj)P (ujLj)dUP (L;) % P (X jUn L;Lj)P(L;);

u

in which we approximatethe integral by usingthe maximum
likelihoodlower dimensionaprojection(uy . ). Notethatonly
the visual input is used to make this decision. Then, the
expectedslip is predm}gdby evaluatingthe j °-th learnedslip
modelf;=(Y) = p] + o1 Ko (Y) for thegivenslopeY .

The averageterrain classi cation and slip predictionerrors
and their standarddeviations across50 independentuns are
shawvn in Figure 5. We comparelearningand dimensionality
reductionwithout supervisionwith automaticsupervisionand
with human supervision.We have about » 1000 examples
which are split randomlyinto 70% training and 30% testsets
in eachrun. As the correctslip modelsare not known, the
ultimatetestof performances by comparingthe predictedslip
to the actualmeasuredslip on atestset(nq_; usedin training).
Slip predictionerroris computedas: Err=";2; jF(Xi;Yi) i
zij=N , whereF (x;;y;) is thepredictedandz; is thetargetslip
for atestexample(x;;yi). Theterrainclassi cationresultsare
evaluatedoy comparingo humanlabeledterrains Whenusing
humansupervision the class-membershipf eachexampleis
known, but the parametersf eachclassneedto be estimated.
The latter is equivalentto doing Factor Analysisin eachclass
independentlyDue to someoverlapbetweerthe classesn the
original visualspacetheclassi cationwith humansupervision
canstill incur somenonzerotesterrorin terrainclassi cation.
To re ect themonotonicnatureof slip, anadditionalconstraint
(5 . 0) is imposed(see[1] for details).

As seenin Figure5, learningwith automaticallysupervised
dimensionalityreductionoutperformsthe unsupervisedearn-
ing method and decreaseghe gap to learning with human
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Fig. 5. Averagetestresultsfor terrainrecognition(left) andslip prediction
(right). Comparisorto a baselinenonlinearregressionmethodis alsoshavn.
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Fig. 6. The learnedslip modelsand the classi cation of the testexamples
when learning with automatic supervision(left) and learning with human
supervsion (right). The examplesare marked accordingto their predicted
terrainclasslabels(the colors and markers are consistentwith Figure 1).

supervision.More precisely learning with automaticsuper
vision achieves about42% and 45% of the possiblemargin
for improvement betweenthe unsupervisedand the human
supervisedearningfor terrain classi cation and slip predic-
tion, respectiely. Naturally, for thetype of supervisiorusedin
theseexperiments(Figure 1), we cannotexpectto fully close
the gap to humansupervisionpecausehe supervisiorsignals
arenot sufciently well separableThe improved performance
of the superviseddimensionalityreductioncomparedto the
unsupervisedone is due to selectingmore appropriatelow
dimensionalvisual representationsvhich provide for better
discrimination among the terrain classesand respectrely
for learning of more accurateslip modelsfor eachterrain.
Comparingthe resultsto [3] we can seethat working with
more descriptve high dimensionalrepresentationss instru-
mental to achieving better performance At the sametime,
as the representatioris more powerful, there is a smaller
maigin for improvementbetweenthe unsupervisedand the
humansupervisedearning. We also comparedthe resultsto
a baselinenonlinearregressionmethod, k-NearestNeighbor
which learns directly the mapping from the inputs (visual
featuresx and slopey) to the output (slip z) and doesnot
apply dimensionalityreductionas an intermediatestep. Note
that directly learningthe desiredoutputs,asis with k-Nearest
Neighbor important information about the structure of the
problem,namelythatthereareseveralunderlyingterraintypes
on which potentiallydifferentslip behaiors occut is ignored.
As seenin Figure5, the k-NearestNeighboris outperformed
by the otherthreemethods.

Thelearnednonlinearmodelsfor oneof the runsareshavn



in Figure 6. The resultantslip models when learning with

terrainclassi cationin thevisualspaceNotethat,althoughthe

correctslip modelshave beenlearned therearestill examples
which are misclassi ed for both learning scenariosbecause
only the visual information is usedduring testing. The slip

model used here has less inputs than in [2] and its main

purposeis to act as supervisionrather than achieze a good

approximatiorof the slip signal.Now, giventhattherobothas

automaticallylearnedhow to visually discriminateterrainsby

using the slip signalsas supervisionthe nal slip prediction

resultscan be furtherimproved by applyinga more advanced
slip learningalgorithm, e.g.by taking into consideratiormore

inputs [2].

Our resultsshav that using additional, automatically ob-
tained, signals as supervisionis worthwhile: it outperforms
purely unsupervisedvision-basedlearning and has the po-
tential to substitute the expensve, tedious, and inef cient
humanlabelingin applicationsrelatedto autonomousaviga-
tion. Secondly as more descriptve high dimensionalfeature
representationare crucial to achiezing betterrecognitionper
formance,performing dimensionalityreductionand utilizing
the automaticsupervisionin the procesds moreadwantageous

thanworking with simplerlower dimensionakrepresentations.

V1. CONCLUSIONS AND FUTURE WORK

We have proposeda novel probabilistic framewvork for
dimensionalityreductionwhich takesadwantageof ambiguous
andnoisy supervisionobtainedautomaticallyfrom the robot's
onboardsensors.As a result, simultaneouslearning of the
lower dimensionatepresentatiortheterrainclassi cation,and
the nonlinearslip behaior on eachterrain is done by us-
ing only automaticallyobtainedmeasurementshe proposed
methodstandsin betweenreasoningunderuncertaintyusing
probabilistic models and retrieving the underlying structure
of the data(i.e. dimensionalityreduction).The impact of the
proposedmethodof automaticallysuperviseddimensionality
reductionis that: 1) a better visual representationcan be
createdoby utilizing the supervisionfrom the robot, or the task
at hand;2) the robot canlearnaboutterrainsandtheir visual
representatioby usingits own sensorassupervision3) after
thelearninghascompletedthe expectedmobility behaior on
differentterrainscan be predictedremotely

We have shavn experimentson a datasetcollected while
driving in the eld, in which different terrain types are
learned better from both vision and slip supervisionthan
from vision aloneand unsupervisedlimensionalityreduction.
Signi cant improvements,currently under investigation, can
be done by introducing temporal/spatialcontinuity to the
consecutie/neighboringterrain measurement€xtendingthe
methodto online learningis animportantfuture direction,in
which the main challengesaredeterminingwhich examplesto
keepin memoryand estimatingthe numberof terrains.
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