<table>
<thead>
<tr>
<th>Algorithm</th>
<th>features</th>
<th>classifier</th>
<th>training</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACF</td>
<td>channels</td>
<td>AdaBoost</td>
<td>INRIA</td>
<td></td>
</tr>
<tr>
<td>ACF+</td>
<td>channels</td>
<td>AdaBoost</td>
<td>Caltech</td>
<td></td>
</tr>
<tr>
<td>ACF-Caltech</td>
<td>channels</td>
<td>AdaBoost</td>
<td>Caltech</td>
<td></td>
</tr>
<tr>
<td>ACF+SDt</td>
<td>channels</td>
<td>AdaBoost</td>
<td>Caltech</td>
<td></td>
</tr>
<tr>
<td>AFS</td>
<td>multiple</td>
<td>linear SVM</td>
<td>INRIA</td>
<td></td>
</tr>
<tr>
<td>AFS+Geo</td>
<td>multiple</td>
<td>linear SVM</td>
<td>INRIA</td>
<td></td>
</tr>
<tr>
<td>CCF</td>
<td>deep</td>
<td>AdaBoost</td>
<td>Caltech</td>
<td></td>
</tr>
<tr>
<td>CCF+CF</td>
<td>deep+channels</td>
<td>AdaBoost</td>
<td>Caltech</td>
<td></td>
</tr>
<tr>
<td>Checkerboards+</td>
<td>channels</td>
<td>AdaBoost</td>
<td>Caltech</td>
<td></td>
</tr>
<tr>
<td>ChnFtrs</td>
<td>channels</td>
<td>AdaBoost</td>
<td>INRIA</td>
<td>updated (see addendum on author website)</td>
</tr>
<tr>
<td>CompACT-Deep</td>
<td>multiple</td>
<td>boosting</td>
<td>Caltech</td>
<td></td>
</tr>
<tr>
<td>ConvNet</td>
<td>pixels</td>
<td>DeepNet</td>
<td>INRIA</td>
<td></td>
</tr>
<tr>
<td>Crosstalk</td>
<td>channels</td>
<td>AdaBoost</td>
<td>INRIA</td>
<td></td>
</tr>
<tr>
<td>DBN-Isol</td>
<td>HOG</td>
<td>DeepNet</td>
<td>INRIA</td>
<td></td>
</tr>
<tr>
<td>DBN-Mut</td>
<td>HOG</td>
<td>DeepNet</td>
<td>INRIA/Caltech</td>
<td></td>
</tr>
<tr>
<td>DeepCascade</td>
<td>pixels</td>
<td>DeepNet</td>
<td>Caltech</td>
<td></td>
</tr>
<tr>
<td>DeepCascade+</td>
<td>pixels</td>
<td>DeepNet</td>
<td>Caltech+</td>
<td></td>
</tr>
<tr>
<td>DeepParts</td>
<td>pixels</td>
<td>DeepNet</td>
<td>Caltech</td>
<td></td>
</tr>
<tr>
<td>FastCF</td>
<td>channels</td>
<td>AdaBoost</td>
<td>INRIA/Caltech</td>
<td></td>
</tr>
<tr>
<td>F-DNN</td>
<td>pixels</td>
<td>DeepNet</td>
<td>Caltech+</td>
<td></td>
</tr>
<tr>
<td>F-DNN+SS</td>
<td>pixels</td>
<td>DeepNet</td>
<td>Caltech+</td>
<td></td>
</tr>
<tr>
<td>FeatSynth</td>
<td>multiple</td>
<td>linear SVM</td>
<td>INRIA</td>
<td></td>
</tr>
<tr>
<td>FisherBoost</td>
<td>HOG+COV</td>
<td>FisherBoost</td>
<td>INRIA</td>
<td></td>
</tr>
<tr>
<td>FPDW</td>
<td>channels</td>
<td>AdaBoost</td>
<td>INRIA</td>
<td></td>
</tr>
<tr>
<td>FtrMine</td>
<td>channels</td>
<td>AdaBoost</td>
<td>INRIA</td>
<td></td>
</tr>
<tr>
<td>Franken</td>
<td>channels</td>
<td>AdaBoost</td>
<td>INRIA</td>
<td></td>
</tr>
<tr>
<td>HikSvm</td>
<td>HOG</td>
<td>HIK SVM</td>
<td>INRIA</td>
<td></td>
</tr>
<tr>
<td>HOG</td>
<td>HOG</td>
<td>linear SVM</td>
<td>INRIA</td>
<td></td>
</tr>
<tr>
<td>HOG-LBP</td>
<td>HOG+LBP</td>
<td>linear SVM</td>
<td>INRIA</td>
<td></td>
</tr>
<tr>
<td>InformedHaar</td>
<td>channels</td>
<td>AdaBoost</td>
<td>INRIA/Caltech</td>
<td></td>
</tr>
<tr>
<td>JointDeep</td>
<td>color+gradient</td>
<td>deep net</td>
<td>INRIA/Caltech</td>
<td></td>
</tr>
<tr>
<td>Katamari</td>
<td>channels</td>
<td>AdaBoost</td>
<td>INRIA/Caltech</td>
<td></td>
</tr>
<tr>
<td>LatSvm-V1</td>
<td>HOG</td>
<td>latent SVM</td>
<td>PASCAL</td>
<td></td>
</tr>
<tr>
<td>LatSvm-V2</td>
<td>HOG</td>
<td>latent SVM</td>
<td>INRIA</td>
<td></td>
</tr>
<tr>
<td>LDCF</td>
<td>channels</td>
<td>AdaBoost</td>
<td>Caltech</td>
<td></td>
</tr>
<tr>
<td>LDCF+</td>
<td>channels</td>
<td>AdaBoost</td>
<td>Caltech</td>
<td></td>
</tr>
<tr>
<td>LFOV</td>
<td>pixels</td>
<td>DeepNet</td>
<td>Caltech</td>
<td></td>
</tr>
<tr>
<td>MLS</td>
<td>HOG</td>
<td>AdaBoost</td>
<td>INRIA</td>
<td></td>
</tr>
<tr>
<td>MOCO</td>
<td>HOG+LBP</td>
<td>latent SVM</td>
<td>Caltech</td>
<td></td>
</tr>
</tbody>
</table>

Caltech Pedestrian Dataset:
Evaluated Algorithms

- ACF: 18 channels AdaBoost INRIA. Evolution of ChnFtrs [source code].
- ACF++: channels AdaBoost Caltech.
- ACF-Caltech: channels AdaBoost Caltech.
- ACF+SDt: channels AdaBoost Caltech. SDt = Stabilized Dt (motion features).
- AFS: multiple linear SVM INRIA. Accelerated version of FeatSynth.
- AFS+Geo: multiple linear SVM INRIA. Variant of AFS with geometry constraints.
- CCF: deep AdaBoost Caltech.
- CCF+CF: deep+channels AdaBoost Caltech. Checkerboards + flow-based features from [42].
- Checkerboards+: channels AdaBoost Caltech.
- ChnFtrs: 17 channels AdaBoost INRIA.
- CompACT-Deep: multiple boosting Caltech.
- ConvNet: pixels DeepNet INRIA.
- Crosstalk: channels AdaBoost INRIA.
- DBN-Isol: HOG DeepNet INRIA.
- DeepParts: pixels DeepNet Caltech+.
- FastCF: channels AdaBoost INRIA/Caltech. 100 fps on a CPU.
- F-DNN: pixels DeepNet Caltech+.
- F-DNN+SS: pixels DeepNet Caltech+.
- FeatSynth: multiple linear SVM INRIA.
- FisherBoost: HOG+COV FisherBoost INRIA.
- FPDW: channels AdaBoost INRIA.
- FtrMine: channels AdaBoost INRIA.
- Franken: channels AdaBoost INRIA.
- HikSvm: HOG HIK SVM INRIA. Multiple occlusion specific models.
- HOG: HOG linear SVM INRIA. Boundary effect fixed since publication.
- HOG-LBP: HOG+LBP linear SVM INRIA.
- InformedHaar: channels AdaBoost INRIA/Caltech.
- JointDeep: color+gradient deep net INRIA/Caltech.
- Katamari: channels AdaBoost INRIA/Caltech.
- LatSvm-V1: HOG latent SVM PASCAL.
- LatSvm-V2: HOG latent SVM INRIA.
- LDCF: channels AdaBoost Caltech.
- LDCF+: channels AdaBoost Caltech.
- LFOV: pixels DeepNet Caltech.
- MLS: HOG AdaBoost INRIA.
- MOCO: HOG+LBP latent SVM Caltech.
<table>
<thead>
<tr>
<th>Features</th>
<th>Classifier</th>
<th>Training</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRFC + Semantic [1]</td>
<td>channels</td>
<td>boosting</td>
<td>Caltech+ CamVid+SiftFlow+KITTI data for segm. ImageNet pre-training</td>
</tr>
<tr>
<td>MS-CNN [8]</td>
<td>pixels</td>
<td>deep net</td>
<td>Caltech+ImageNet</td>
</tr>
<tr>
<td>MT-DPM [54]</td>
<td>HOG</td>
<td>latent SVM</td>
<td>Caltech</td>
</tr>
<tr>
<td>MT-DPM + Context [54]</td>
<td>HOG</td>
<td>latent SVM</td>
<td>Caltech+ context obtained from a vehicle detector</td>
</tr>
<tr>
<td>MultiFtr [53]</td>
<td>multiple</td>
<td>AdaBoost</td>
<td>INRIA</td>
</tr>
<tr>
<td>MultiFtr + CSS [51]</td>
<td>multiple</td>
<td>linear SVM</td>
<td>TUD-Motion</td>
</tr>
<tr>
<td>MultiFtr + Motion [51]</td>
<td>multiple</td>
<td>linear SVM</td>
<td>TUD-Motion</td>
</tr>
<tr>
<td>MultiResC [41]</td>
<td>HOG</td>
<td>latent SVM</td>
<td>Caltech</td>
</tr>
<tr>
<td>MultiSDP [57]</td>
<td>HOG + CSS</td>
<td>deep net</td>
<td>INRIA/Caltech</td>
</tr>
<tr>
<td>pAUCBoost [38]</td>
<td>HOG + COV</td>
<td>pAUCBoost</td>
<td>INRIA</td>
</tr>
<tr>
<td>Pls [44]</td>
<td>multiple</td>
<td>PLS + QDA</td>
<td>INRIA</td>
</tr>
<tr>
<td>PoseInv [26]</td>
<td>HOG</td>
<td>AdaBoost</td>
<td>INRIA+</td>
</tr>
<tr>
<td>PoseInvSvm [26]</td>
<td>HOG</td>
<td>kernel SVM</td>
<td>INRIA+</td>
</tr>
<tr>
<td>RandForest [29]</td>
<td>HOG + LBP</td>
<td>random forest</td>
<td>INRIA/Caltech</td>
</tr>
<tr>
<td>Roerei [3]</td>
<td>channels</td>
<td>AdaBoost</td>
<td>INRIA</td>
</tr>
<tr>
<td>RPN + BF [58]</td>
<td>pixels</td>
<td>DeepNet + AdaBoost</td>
<td>Caltech + ImageNet</td>
</tr>
<tr>
<td>SA-FastRCNN [24]</td>
<td>pixels</td>
<td>deep net</td>
<td>Caltech + ImageNet</td>
</tr>
<tr>
<td>SCCPriors [56]</td>
<td>channels</td>
<td>AdaBoost</td>
<td>INRIA/Caltech</td>
</tr>
<tr>
<td>SCF + AlexNet [22]</td>
<td>pixels</td>
<td>deep net</td>
<td>Caltech + ImageNet</td>
</tr>
<tr>
<td>SDN [27]</td>
<td>pixels</td>
<td>deep net</td>
<td>INRIA/Caltech</td>
</tr>
<tr>
<td>Shapelet [43]</td>
<td>gradients</td>
<td>AdaBoost</td>
<td>INRIA with boundary effects fixed [53]</td>
</tr>
<tr>
<td>Shapelet-orig [43]</td>
<td>gradients</td>
<td>AdaBoost</td>
<td>INRIA</td>
</tr>
<tr>
<td>SketchTokens [25]</td>
<td>channels</td>
<td>AdaBoost</td>
<td>INRIA+</td>
</tr>
<tr>
<td>SpatialPooling [39]</td>
<td>multiple</td>
<td>pAUCBoost</td>
<td>INRIA/Caltech</td>
</tr>
<tr>
<td>SpatialPooling+ [40]</td>
<td>multiple</td>
<td>pAUCBoost</td>
<td>Caltech</td>
</tr>
<tr>
<td>TA-CNN [47]</td>
<td>pixels</td>
<td>DeepNet</td>
<td>Caltech++</td>
</tr>
<tr>
<td>VJ [50]</td>
<td>Haar</td>
<td>AdaBoost</td>
<td>INRIA</td>
</tr>
<tr>
<td>VJ-OpenCV [50]</td>
<td>Haar</td>
<td>AdaBoost</td>
<td>INRIA</td>
</tr>
<tr>
<td>* + 2Ped [36]</td>
<td>HOG</td>
<td>latent SVM</td>
<td>INRIA+</td>
</tr>
</tbody>
</table>

References

Pedestrian Detection with a Large-Field-Of-View Deep Network
ICRA 2015, Seattle, WA. 1

Real-Time Pedestrian Detection With Deep Network Cascades
BMVC 2015, Swansea, UK. 1

Part-based Feature Synthesis for Human Detection
ECCV 2010, Crete, Greece. 1

Pedestrian detection at 100 Frames Per Second
CVPR 2012, Providence, Rhode Island. 1, 2
Seeking the strongest rigid detector
CVPR 2013, Portland, OR. 2

Ten years of pedestrian detection, what have we learned?
ECCV-CVRSUAD 2014, Zurich, Switzerland. 1

Learning Complexity-Aware Cascades for Deep Pedestrian Detection
ICCV 2015, Santiago, Chile. 1

[8] Z. Cai, Q. Fan, R. Feris, and N. Vasconcelos
A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection
ECCV 2016, Amsterdam, The Netherlands. 2

Detection Evolution with Multi-order Contextual Co-occurrence.
CVPR 2013, Portland, OR. 1

[10] A. D. Costea and S. Nedevschi
Word Channel Based Multiscale Pedestrian Detection
Without Image Resizing and Using Only One Classifier
CVPR 2014, Columbus, Ohio. 2

Semantic Channels for Fast Pedestrian Detection
CVPR 2016, Las Vegas, Nevada. 2

[12] A. D. Costea, A. Vesa, and S. Nedevschi
Fast Pedestrian Detection for Mobile Devices
ITSC 2015, Canary Islands. 1

Histogram of Oriented Gradient for Human Detection
CVPR 2005, San Diego, California. 1

Crosstalk Cascades for Frame-Rate Pedestrian Detection
ECCV 2012, Florence Italy. 1

The Fastest Pedestrian Detector in the West
BMVC 2010, Aberystwyth, UK. 1

Feature Mining for Image Classification
CVPR 2007, Minneapolis, Minnesota. 1

Integral Channel Features

Fast Feature Pyramids for Object Detection
PAMI, 2014. 1
Fused DNN: A deep neural network fusion approach to fast and robust pedestrian detection
arXiv, 2016. 1

A Discriminatively Trained, Multiscale, Deformable Part Model
CVPR 2008, Anchorage, Alaska. 1

Object Detection with Discriminatively Trained Part Based Models
PAMI 2010. 1

[22] J. Hosang, M. Omran, R. Benenson, and B. Schiele
Taking a Deeper Look at Pedestrians
CVPR 2015, Boston, Massachusetts. 2

Fast multiple-part based object detection using KD-Ferns
CVPR 2013, Portland, OR. 1

Scale-aware Fast R-CNN for Pedestrian Detection
arXiv, 2016. 2

Sketch Tokens: A Learned Mid-level Representation for Contour and Object Detection
CVPR 2013, Portland, OR. 2

[26] Z. Lin and L. Davis
A Pose-Invariant Descriptor for Human Detection and Segmentation
ECCV 2008, Marseille, France. 2

[27] P. Luo, Y. Tian, X. Wang, and X. Tang
Switchable Deep Network for Pedestrian Detection
CVPR 2014, Columbus, Ohio. 2

Classification Using Intersection Kernel Support Vector Machines is efficient
CVPR 2008, Anchorage, Alaska. 1

Random Forests of Local Experts for Pedestrian Detection
ICCV 2013, Sydney, Australia. 2

Handling Occlusions with Franken-classifiers
ICCV 2013, Sydney, Australia. 1

[31] W. Nam, B. Han, and J. H. Han
Improving Object Localization Using Macrofeature Layout Selection
ICCV Workshop on Visual Surveillance 2011, Barcelona, Spain. 1

[32] W. Nam, P. Dollár, and J. H. Han
Local Decorrelation For Improved Pedestrian Detection
NIPS 2014, Montreal, Quebec. 1
[33] E. Ohn-Bar and M. Trivedi
To Boost or Not to Boost? On the Limits of Boosted Trees for Object Detection
ICPR 2016, Cancun, Mexico. 1

[34] W. Ouyang and X. Wang
A Discriminative Deep Model for Pedestrian Detection with Occlusion Handling
CVPR 2012, Providence, RI. 1

[35] W. Ouyang and X. Wang
Joint Deep Learning for Pedestrian Detection
ICCV 2013, Sydney, Australia. 1

[36] W. Ouyang and X. Wang
Single-pedestrian detection aided by multi-pedestrian detection.
CVPR 2013, Portland, OR. 1, 2

[37] W. Ouyang, X. Zeng and X. Wang
Modeling Mutual Visibility Relationship with a Deep Model in Pedestrian Detection
CVPR 2013, Portland, OR. 1

[38] S. Paisitkriangkrai, C. Shen, A. van den Hengel
Efficient pedestrian detection by directly optimize the partial area under the ROC curve
ICCV 2013, Sydney, Australia. 2

Strengthening the Effectiveness of Pedestrian Detection
ECCV 2014, Zurich, Switzerland. 2

[40] S. Paisitkriangkrai, C. Shen, A. van den Hengel
Pedestrian Detection with Spatially Pooled Features and Structured Ensemble Learning
arXiv, 2014. 2

[41] D. Park, D. Ramanan, C. Fowlkes
Multiresolution models for object detection
ECCV 2010, Crete, Greece. 2

Exploring Weak Stabilization for Motion Feature Extraction
CVPR 2013, Portland, OR. 1

[43] P. Sabzmeydani and G. Mori
Detecting pedestrians by learning shapelet features
CVPR 2007, Minneapolis, Minnesota. 2

Human Detection Using Partial Least Squares Analysis
ICCV 2009, Kyoto, Japan. 2

[45] P. Sermanet, K. Kavukcuoglu, S. Chintala, Y. LeCun
Pedestrian Detection with Unsupervised Multi-Stage Feature Learning
CVPR 2013, Portland, OR. 1

Training Effective Node Classifiers for Cascade Classification
IJCV 2013. 1
[47] Y. Tian, P. Luo, X. Wang, and X. Tang
Pedestrian Detection aided by Deep Learning Semantic Tasks
CVPR 2015, Boston, Massachusetts. 2

[48] Y. Tian, P. Luo, X. Wang, and X. Tang
Deep Learning Strong Parts for Pedestrian Detection
ICCV 2015, Santiago, Chile. 1

Normalized Autobinomial Markov Channels For Pedestrian Detection
BMVC 2015, Swansea, UK. 2

[50] P. Viola and M. Jones
Robust Real-Time Face Detection
IJCV 2004. 2

New Features and Insights for Pedestrian Detection
CVPR 2010, San Francisco, California. 2

[52] X. Wang, T. X. Han, and S. Yan
An HOG-LBP Human Detector with Partial Occlusion Handling
ICCV 2009, Kyoto, Japan. 1

[53] C. Wojek and B. Schiele
A Performance Evaluation of Single and Multi-Feature People Detection
DAGM 2008, Munich, Germany. 2

[54] J. Yan, X. Zhang, Z. Lei, S. Liao, S. Z. Li
Robust Multi-Resolution Pedestrian Detection in Traffic Scenes
CVPR 2013, Portland, OR. 2

[55] B. Yang, J. Yan, Z. Lei, and S. Z. Li
Convolutional Channel Features
ICCV 2015, Santiago, Chile. 1

[56] Y. Yang, Z. Wang, and F. Wu
Exploring Prior Knowledge for Pedestrian Detection
BMVC 2015, Swansea, UK. 2

[57] X. Zeng, W. Ouyang, X. Wang
Multi-Stage Contextual Deep Learning for Pedestrian Detection
ICCV 2013, Sydney, Australia. 2

[58] L. Zhang, L. Lin, X. Liang, K. He
Is Faster R-CNN Doing Well for Pedestrian Detection?
ECCV 2016, Amsterdam, The Netherlands. 2

[59] S. Zhang, C. Bauckhage, and A. B. Cremers
Informed Haar-like Features Improve Pedestrian Detection
CVPR 2014, Columbus, Ohio. 1

[60] S. Zhang, R. Benenson, and B. Schiele
Filtered channel features for pedestrian detection
CVPR 2015, Boston, Massachusetts. 1